

| AP DIP JUMPERS LOWEST PRICE IN THE UK. |
| :---: | :---: | :---: | :---: |
| NEW AP LOW-PROFILE "D" SUB MINIATURE JUMPERS |
| ALL RS232 COMPUTER LINK UP PROBLEMS SOLVED |
| FREE TC16 WITH EVERY SUPERSTRIP SOLD |

TRANSMITTER TEST SET, TTS 520

Tests transmitters up to 100 watts rating
For testing hase stations: mobile or fixed radios: pocket phones: pagers. etc

Instrument incorporates: r.f. counter • modulation meter directional power meter •a.f. voltmeter •a.f. synthesizer • distortion analyser • a.f. counter • weighting filters • r.f. power load/attenuator
Transmitter measurements include: frequency • power modulation (a.m. or f.m.) level. frequency. distortion. sensitivity, bandwidth, capability - call tone modulation check • aerial efficiency
Many measuring functions automatic-fewer controls, easier to understand and operate

Reduces operator error and fatigue
Compatible with Farnell SSG520 synthesized signal generator to provide full transceiver testing facilities
Split concept (receiver/transmitter testing) offers distinct advantages over dedicated test set or discrete instruments
Programmable. Also IEEE488 option available for low cost computer controlled A.T.E.

Releases skilled engineers from routine tests. More time for repairs and other tasks

Pre-service diagnostic tool. Use printer to record condition of radio as received and to verify performance to specification after repair or recalibration

Helps speed up test throughput Paul Brierley
 nology.

wireless world

ELECTRONICS/TELEVISION/RADIO/AUDIO

AUGUST 1981 Vol 87 No 1547

29 Information versus emancipation
$\left.\begin{array}{c}\begin{array}{c}30 \begin{array}{c}\text { Electronics on the road } \\ \text { by J. R. Watkinson }\end{array} \\ 34 \text { World of amateur radio } \\ \text { 35 Simplified design of d.c. power supplies } \\ \text { by J. C. S. Richards }\end{array} \\ \hline \begin{array}{c}\text { The death of electric current } \\ \text { Distortion at amplifier-speaker interface }\end{array} \\ \hline \begin{array}{c}\text { 44 Satellite tracking by home computer } \\ \text { by N. Kyriazis }\end{array} \\ \hline \text { 47 Ryadio and the birth of the universe Shepherd } \\ \text { by E. Eastwood }\end{array}\right]$

CURRENT USED
 Everything as newTEST EOUIPMENT except the price!

5 GOOD REA
FULL At Electronic
Brokers we ive you a TWELVE
MONTHS WARRANTY on test equipment and 90 DAYS
ON MOST COMPUTER PERMPHERALS. And weill stand behind it all the way.

STATE-OF-
THE-ART.
TECH-
NOLOGY
At Electronic
Brokers. we
carry large stocks of
modern test and
computer equipment.
and our strong buying
power means we are
able to purchase the
verry latest state-of-the.
art technology.

Electronic Brokers Limited 61/65 Kings Cross Road London WC1X 9LN England Telephone: 01-278 3461 Telex: 298694 Elebro G
WW-200 for further details

WW - 032 FOR FURTHER DETALLS

World-beating Oscilloscope Offers Electronic Brokers
Increatible performance Increcilible Price!!!
$61 / 65$ King's Cross Road
London WC1X 9LN
Tel: 01 No 2783461 Telex 298694
ww - 034 FOR FURTHER DETAILS

MODEL UV141 EPROM ERASER
MODEL UV141 EPRO

- Built-inse 5 -50 minute timer

Convenient slide-tray loading of devices
Safety
Rugherloctocked to prevent eystruction

- Rugged construction
- MINS \& ERASE indicators

MODEL UV140 EPROM ERASER
Similar to Model UV141 but without

(single rail)
2708 (450ns)
$\begin{array}{lllll}£ 3.90 & £ 3.50 & £ 3.10 & £ 2.90\end{array}$
Postage and Packing is included in all prices. ADD VAT at 15%,
All our EPROMS are manúfactured by leading companies and are
All our EPROMS are manúfactured by leading companies and are
fully guaranteed, branded and to full specification.
WRITE OR TELEPHONE FOR FURTHER DETAILS OR SEND
Overseas customers, please telex or write for quotation and
GP INDUSTRIAL
ELECTRONICS LTD.
Unit 6, Burke Road, Totnes Industrial Estate, Totnos, Devon
Telephone: Totnes $(0803) 863360$ sales, 863380 technical
DISTRIBUTORS REQUIRED: EXPORT ENQUIRIES WELCOME
WW - 036 FOR FURTHER DETALS

£285 mains battery
8012A $31 / 2$ Digit LCD DMM with true RMS on AC volts and current.
DC volts 200 mV - 1 KV . 100 NV resolution. AC volts 200 mV - 500 V .
 Resistance $200 \Omega \Omega-20 \mathrm{M} \Omega, 0,1.1 \Omega$ resolution Low resistance 2Ω and 20Ω,
$1 \mathrm{~m} \Omega$ resolution Conductance ranges $2 \mathrm{~m} S-20 \mu \mathrm{~S}-200 \mathrm{nS}$

 $£ 244.00$ mains battery
$8010 \mathrm{~A} 31 / 2$ Digit LCD 8010A $31 / 2$ Digit LCD
DMM Same spec as
 $\mathrm{AC} / \mathrm{DC}$ current range,
but no low resistance
rane range.
f167.00 mains model
f193.00 $3024 \mathrm{~A} 31 / 2$ Digit hand held LLD DMM w with pe
hold Level Detector and continuity tester.
DC volts $200 \mathrm{mV}-1 \mathrm{KV}$. $100 \mu V$ resolution. 2 ;
AC current $2 m A$ -
 Conductance 200nS. Peakhold of AC or DC volts and current.
 T103 $\begin{gathered}\text { 8024A with extra conductance and } \\ \text { no peak hold, level or continuity ranges. } \\ \text { Complete with carrying case. } £ 125 . C 0\end{gathered}$ $8022 \mathrm{~A} 31 / 2$ Digit hand held LCD DMM. Spec
zs per 8020 A but no conductance ranges 7s Der 8020 A but no conductance ranges
and slight reduction in accuracy, $£ 89.00$
carrying case $£ 8.00$ extra. Also available a range of accessories including
current shunts, EHT current shunts,
probe, ft probe, Temperature probe and
touch and hold probe. touch and hold probe.
Full details on request. The warranty period on
all items shown is 1 year all items shown is 1 year
other than the 8020A

Electronic Brokers

$\square=\begin{aligned} & \text { 61-65 King's Cross Road } \\ & \text { London, wC1X 9LN } \\ & \text { Tel: 01-278 3461-Telex } 298694\end{aligned}$ ww - 035 FOR FURTHER DETAILS

Ambit's new concise component catalogue is out !! Our new style concise parts/prices catalogue is available at most newsagents for 50 p - or direct from here.

For personal senvice visit one of our stores
Our new store at Hammersmith is conveniently situated near the end of the M4 and the North and South Circular Roads. There is excellent street parking on meters a few steps away and Hammersmith Underground Station is nearby. Call in and see us soon

Over 100,000 copies sold already! Don't miss out on your copy. On sale now in all branches WH Smith of price £1. In case of difficulty check the coupon below.

* Same day service on in-stock lines
* Very large percentage of our stock lines in stock * All prices include Vat
* Large range of all the most useful components * First class reply paid envelope with every order * Quality components-no rejects-no re-marks * Competitive prices
* Your money is sate with a reputable company

On price, service, stock, quality and security it makes sense now more than ever to make mimplin your sense now more than evert ever time!
first choice for components every

Post this coupon now.
Post this coupon now.
Please send me a cony of your 320 page catalogue. I enclose $£ 1.25$
 catalaguve top you and have my meneys refurnded. If foo
U.K. send $£ 1.68$ or 12 international Reply Coupons.

All mail to: P.O. Box 3, Rayleigh, Essex SS6 8LR. Tel: Southend (0702) 554155 Sales: (0702) 552911 atherdetais

New! Sinclair 2X81 Personal Computer.

 Kit: $£ 49$. ${ }^{2}$ compeleReach advanced computer comprehension in a few absorbing hours

1980 saw a genuine breakthrough-the personal computer for under £100. At $£ 99.95$, the ZX80 offered a specification unchallenged at the price. Over 50,000 were sold, and the ZX80 won virtually universal praise from Now the Sinclair lea for just £69.95, the new Sinclair ZX81 offers even more advanced computer facilities at an even lower price. And
the $Z \times 81$ kit means an even bigger saving. At £ 49.95 it costs almost 40% less than the ZX80 kit! Lower price: higher capability teach yourself computing but the ZX81 packs even greater working capability than the ZX80
It uses the same micro-processor,
but incorporates a new more 8KBASICROM-the 'trained intelligence of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up and displays
And the ZX8 8 incorporates other operation refinements-the facility to load and save named programs on program off a cassette, or thro select a program off a cassette through the

Higher specification, lower price
how's it done? how's it done?
Quite simply, by reduced the chips in a working 80 from 40 or so, to 21 . The ZX 81 reduces the 21 to 4 !
The secret lies in a totally new master chip. Designed by Sinclair and
custom-built in Britain, this unique chip replaces 18 chips from the ZX80!

Proven micro-processor, new 8 K BASIC
ROM, RAM - and unique new masterchip.

Kit or built it's up to you! The picture shows dramatically how
easy the ZX81 kit is to build $:$ iust tour easy the ZX81 kit is to build: just four chips to assemble (plus, of course the hours' work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor- 600 mA at 9 V DC nominal unregulated (supplied with Kit version).
Kit and built versions come complete with aill leads to connect to your TV (colour or black and
cassette recorder.

lew, improved specification Z80A micro-processor-new faster ersion of the famous Z80 chip, widely
recognised as the best ever made
 key word entry: the ZX81 eliminates a grea
deal of tiresome typing. Key words (RUN, LIST, PRINT etc.) have their ow
single-key entry
Unique syntax
Unique syntaxidentify programming

- Full range of mathematical and scientific functions accurate to eight decimal places.
isplay facilities.
Multi-dimensional string and umerical arrays.
Up to 26 FOR/NEXT loops.
Randomise function-useful for games is well as serious applications.
Cassette LOAD and SAVE with lamed programs.
1K-byte RAM expandable to 16 K ytes with Sinclair RAM pack Able to drive the new Sinclair printer ot available yet - but coming soon! Advanced 4-chip design: microrocessor, ROM, RAM, plus master chi 8 ZX80 chips.
 ming, from first principles to complex -children. frouneed no priorknowledge -children from 12 upwards soon become fam
operation.

If you own a Sinclair ZX80...

The new 8K BASIC ROM used in the Sinclair ZX81 is available to ZX80 owners as a drop-in replacement chip. (Complete with new keyboard template and operating manual.)
graphics, all the advanced features of the ZX81 are now available on your ZX80-including the ability to drive the
Sinclair ZX Printer.

Coming soon-

 the IX Printer.Designed exclusively for use with the ZX81 (and ZX80 with 8K BASIC ROM) the printer offers full alphanumerics cated graphics. Special features include COPY, which prints out exactly what is on the whole TV screen without the need for further instructions. The ZX Printer will be available in Summer 1981 at around £50-watch this space!

16K-BYTE RAM pack for massive add-on memory.
Designed as a complete module to your Sinclair ZX80 or ZX81, the RAM pack simply plugs into the existing. expansion port at the rear of the com puter to multiply your data/program Use it for lo grams or as a personal database. Yet it costs as little as half the price of competitive additional memory

How to order your ZX81
or Barclaycard attention 24 hours a day, every day BYFREEPOST-use the no-stampneeded coupon below. You can pay by cheque, postal order, Access or
EITHER WAY-please allow up to 28 days for delivery. And there's a 14 -day money-back option, of course. We wan you to be satisfied beyond doubt

A much improved computer housing situation... housing situation with the introduction of this superb new series of computer terminal

The EP4000 is not just an EPROM Programmer

Not only does the
EP4000 copy, store, program and duplicate the 2704/2708/2716(3) /2508/2758/2716/2516/2532 and 2732 EPROMs without personality cards or modules, but also includes a video
output for memory ma output for memory
display to make the powerful editing facilities really useful (and this is in addition to the in-built LED display for stand-alone use), but it also comes as standa
input/output - RS232, 20 mA loop, TTL, input/output - RS232, 20mA loop, TTL,
parallel handshake, cassette, printer and direct parallel handshake, cassette, printer and direct memory access. Now the programming with our range of add-on accessories listed below

. . . but also a Real Time EPROM Emulator

Real time EPROM Emulation is the second major function of the EP4000. This facility allows the machine to directly replace your incircuit EPROMs during the process of program circuit EPROMs during the process of program development - the EP4000 can be conf
to look like any EPROM it is capable of to look like any EPROM it is capable of
programming. The press of a button isolates

. . . with real technical back-up and service.

the external system so that data changes, entries, editing and downl data changes, entries, editing and downloading can be
implemented. When the program is complet implemented. When the program is comp and working, the simulator cable can be EP4000.

The EP4000 comes with a technical manual describing every aspect of the machine - its purpose, its use, and how to use it. It also has a section describing the whole process of program development
And if you ever need technical help or advice, you can now dial direct to our technical department for instant attention - Tel. (0803)
863380 . available - these include Bipolar programming
modules, multi-EPROM simulator adaptors, buffer pods, EPROM Erasers, video monitors, 2764/2564 programming satellite, printer and production programmers. The EP4000 is DATAPOST delivery) Telephone DATAPOST delivery). Telephone, telex, write or call for full data and Distributor list, or place your order for immediate despatch - Overseas customers, please tex or write for quotations
and terms. Agents in some countries, and distributors in Britain required.

G.P. Industrial Electronics Ltd.

Unit 6, Totnes Industrial Estate Totnes, Devon TQ9 5XL
Tel. Sales (0803) 863360. Technical (0803) 863380
Telex: 42596 GPELEC
ww - 031 FOR FURTHER DETAILS

HIL.OMAST LIMITED
THE STREET HEYBRIDGE - MALDON Tel. MALDON (0621) 56480 TELEX NO. 995855

We have a comprenensive range of models and options, at fully competitive
prices,

full detais from:- CARACA POWER

PAMAEAL The natural choice for inverters
 "Enquiries invited for export

L700 Radio

 Link System This exciting and versatile new range of ink series, introduced by Telecom, includes Practice (as illustrated) Practice (as inlustrated) transportable or wall transportable or wall to 132 FDM channels or 30 PCM channels.
M293 VHF/AM

Mobile
Now, the AM version of Pye Telecom's successful 290 series of mobiles. Totally flexible yet compact, the 2 ing is available as to six channel radio and offers an extensive range of signalling options.

SSB. 200
Series
An H.F. Single Side Band transceiver unit.

Mobile or fixed configurations are available. Extensive field trials included a most rigorous Land Europe and North Africa During this hree month expedition direct radio contac was maintained with Cambridge H.Q.

If anyone works for you, we do

Here are three new equipments to keep you in touch with the action wherever it's happening. For more than thirty years Pye Telecommunications have played the leading role in radio communications.

Our total capability covers mobile, paging, portable and fixed radiotelephone systems and point to point links throughout the world.

CX80 colour MATRIX PRINTER

At last a low-cost Colour Matrix Printer for Text, Graphics, Histograms, Colour VDU Dumps, etc.

Colour printout is quickly assimilated, makes graphics more understandable and is an ideal medium for the

Compatible with most microprocessors, prints in 7 colours - sophisticated internal programme makes the CX80 easy to use.
Dot Addressable +15 user programmable characters, 96 ASCII and 64 graphics characters in rom. Centronics interface with RS232 and IEEE488 options.
The CX80 is a product of our own design and development laboratories. It represents a British breakthrough in colour printer technology. Colour brochure on request. OEM pricing available.

NRDC-AMBISONIC

UHJ SOUND DECODER

INTRUDER 1 Mk. 2 RADAR ALARM
With Home Office Type approval

 etc.
Complete kit
$\mathbf{5 2 . 5 0}$
plus VAT, or ready built and tested $\cdot \mathbf{£ 6 8 . 5 0}$ plus VAT.

Wireless World Dolby noise reducer

Complete kit PRICE: £49.95
Also vevilibble ready built and tosted
Calibration tapes

All kits are carriage free
IITECREK LIMITED
=. =um

 Dyramic range $>90 \mathrm{~dB}$

Please send SAE for complete lists and specitications Portwood Industrial Estate, Church Gresley, Burton-on-Trent, Staffs DE11 9PT
Burton-on-Trent $(0283) 215432$ Burton-on-Trent (0283) 215432 Telex 377106

Hitachi Portable Oscilloscopes

Multiplex ${ }^{\circ}$ NickelCadmium Cells

MICROCOMPUTER COMPONENTS

MIDWICH COMPUTER CO. LTD.

Amcron INDUSTRIAL MUSCLE

\star POWER RESPONSE DC $-45 \mathrm{KHz}+1 \mathrm{~dB}$
OUTPUT POWER IN EXCESS OF 1.5 KW INTO 2.75 Ohm LOAD (CONTINUOUS R.M.S.). * D.C. OUTPUT 20 AMPS AT 100 VOLTS OR 2 KVA

HARMONIC DISTORTION LESS THAN 0.05\% DC-20KHz AT 1 kW INTO 6 OHMS.
\star PLUG-IN MODULES: CONSTANT VOLTAGE/CURRENT, PRECISION OSCILLATORS \star UNIPOLAR
AND BIPOLAR DIGITAL INTERFACES, FUNCTION GENERATORS, AND MANY OTHERS.
\star OUTPUT MATCHING TRANSFORMERS AVAILABLE TO MATCH VIRTUALLY ANY LOAD.

* FULL OPEN AND SHORT CIRCUIT PROTECTION GUARANTEED STABLE INTO ANY LOAD.

ネ INTERLOCK CAPABILITY FOR UP TO EIGHT UNITS.
ネ 3-YEAR PARTS AND LABOUR WARRANTY.

* UNITS AVAILABLE FROM 100VA-12KVA

For full details on all Amcron Products write or phone Chris Flack

Analogue Associates

P.O. BOX 3

ATtLEBOROUGH
NORFOLK NR17 2 PF
Tel: 0953-452477

Sivb
MODEL 3012-R

Manufacture of the Model 3012 Series II 12" precision pick-up arm ended in 1972. In response to many requests ore-introduce it for professional and hi-fi applic have produced the Model 3012-R. It is basically similar to its classic predecessor but with important refinements in luaing

- Thin walled stainless steel tone-arm
- New design lateral balance system
- Extra rigid low mass shell with double draw-in pins.
- Main weight system with fine adjustment providing a wide range of balance
- Geometry optimised for $12^{\prime \prime}$ records.

Distortion caused by lateral tracking error is at least
25% less than is possible with a $9^{\prime \prime}$ arm and its effectiv mass of 14 grams makes it particularly suitable for the many medium and low compliance cartridges now on the market

Full details will be sent on request.

Write to Dept 0663
SME Limited, Steyning, Sussex, BN4 3GY, England Steyning (0903) 814321. Telex 877808 SME G

The S2-R shell supplied with it is another SME 'first' in heavy gauge aluminium with pin-up and pin-down bayonet for positive locking. The detachable shells are double slotted and therefore compatible with this design
WIRELESS WORLD AUGUST 198

Doounss ${ }^{\text {NOW }} D$ UGEAAS
transformers from TITAN NEW FRANCHISE AT FANTASTIC PRICES - EX STOCK

HANDSOME!

First there was the 130. A handheld D.M.M. which still sets the standards our competitors strive to match. Next came the 131. The introduction of the 135 saw $41 / 2$ digits on a handheld D.M.M. for the very first time.
And that same commitment to innovation has resulted in the latest additions to the range. The Keithley 128 D.M.M. with audio-tone and 870 Digital Thermometer with centigrade and fahrenheit readout.
The result is an unrivalled selection of handheld measuring devices. Each specification carefully matched to a given need. With performance that looks pretty good on paper. And even better in the field!

Model $870 \bigcirc 0.025 \%$ accuracy O Centigrade and fahrenheit readout O Measures up to $1370^{\circ} \mathrm{C}$
0.1° resolution up to $200^{\circ} \mathrm{C}$
Model 128 Audio-tone with adjustable threshold 025 ranges: 5 functions 010 amp span Model 13500.05% accuracy \bigcirc Full overload protection ACU bandwidth to 20 KHz Model 131 0.25\% accuracy 25 ranges: 5 functions 10 amp span
mp span
Model $130 \bigcirc 25$ ranges: 5 functions © 10 amp span © 0.5\% accuracy
All models are guaranteed accurate for one year. And built to the
high standards of quality expected of the Keithley name.
For more information simply fill in the coupon.
And learn about a range which will serve you . . . handsomely!

KEITHLEY

Keithley Instruments Ltd
1 Boulton Road Reading Berkshire RG2 ONL
Telephone (07
Telex 847047
Also available from
ww
ww - 066 FOR FURTHER DETAILS

wireless world

Information versus emancipation

Editor:
TOM IVALL, M.I.E.R.E
Deputy Editor:
PHILIP DARRINGTON
PHILIP DARRINGTO
$01-6613039$
1-661 3039
Technical Editor:
$01-6613500 \times 3590$
Projects Editor:
MIKE SAGIN
1-661 3500×3588
Communications Editor:
MARTIN ECCLLS
$01-6613500 \times 3589$
Nows Editor:
DAVID SCOBII
Di-
Drawing Office Manager
ROGER GOODMAN
Technical Illustr
BETTY PALMER
Advertisement Managor:
Advertisement
BOB NIBBS, A.C.II.
01.6613130
1-6613130
DAVID DISLEY
$01-6613500 \times 3593$
BARBARA MILER
Northern Salos
HARRY AIKEN
$061-8728861$
Midiand Salos
BASIL McGOWA
BASIL McGOO
$021-3564838$
Classified Manager
BRIAN DURRAN
$01-6613106$
JAYNE PALMER
$01-6613033$
BRIAN BANNISTER (Make-up and copr)
$01-6613500 \times 3561$
Publishing Director:
GORDON HENDERSON

Popular will can only express itself within the limits that technical necessities have fixed in Society)
The ICL affair last May showed us that electronic information processing has become more than just a useful aid: it is a departments and several thousand British firms are dependent on the use of this company's machines. The Government
was right to reject the proposal that ICL was right to reject the proposal that ICL
should be broken up, its customers sold off to a foreign firm and its research, development and manufacturing centres - constituting much of the country's, strength in "information technology" disposed of like unwanted chattels. If
information technology (broadly the systems formed from digital computers and data communications) is an importan part of the country's industry it must remain under British ownership. And the must not be abandoned to dependence on commercial decisions made by foreign computer firms who have no special concern about the future of any country et alone this one.
Every nation, of course, wishes to control of the technical means by which its organizations function. In a democracy one would expect this control to be exercised by the popular will. But in modern industrialized countries the wis officials in charge of specialized information, and of the means of handling it, become more influential in the ordering of events. Representative democracy, in
fact, is giving way to oligarchy. The power of legislative assemblies in many countries has been declining relative to the power of the executive. This has happened becaus of the increasingly technical decisions which a modern government has to m
competence of the ordinary representative of the people, so they have to be made inder the permanent bureaucracy of the executive (e.g. the civil service). These bureaucrats always have better, more speciaized information at their comman than the legislators, and they keep it to Their guidance increasingly takes the form of the already prepared decision, the logical outcome of technical necessity which the legislators cannot reasonably refuse to endorse. Much the same can be
said of two other autocratic influences, the military and the large companies and public corporations. The first can keep information to itself on grounds of national security, the second on grounds of commercial secrecy. It is difficult for mere
members of the public to contest their members of the public to contest
arguments because, without full information, the truth of the premises cannot be examined.
In all three groups, rocessing and data communication hat processing and data communication hat
become their central nervous system: without these machines the senior officers and managers would now fail to keep control. At the same time the very presence of such techniques allows the organizations continually to grow larger, in
the resources and people they command, without danger of falling apart. They are integrated and secure. And the chiefs of these power structures, unelected by the people but using the technical products of
their work, privately make decisions which can have profound effects on the economy or security of a whole country.
It's a sad fact for electronics engineers to digest that our contributions to
information technology are now helping to undermine our own freedom to participate which govern our lives. But at least it doesn't feel as bad when we know th machinery is our own design.

Electronics on the road - 1
An outline of the main applications of electronics to road vehicles

by J. R. Watkinson, B.Sc., M. Sc.

The peculiar circumstances of the wroduces vast quantities of echnically conservative products for a market which is largely influenced by cosmetics, dictate that the
equipment fitted usually lags the available technology by at least a
decade. Accordingly, many of the applications to be described here at present be found only on expensive vehicles, if at all.

Power units
Alternators. With the possible exceptio of radios, the alternator was the first quan of radios, the alternator was the first quan semiconductors. The benefits of alternators are well known, but their use in road vehicles was only made possible by the fievs 1 Font of rectiable rectifiers ${ }^{1}$. For a long time the regulator re-
mained mechanical in form, but now electronic regulators are becoming more common. Those using discrete compo nents or thick film technology have been more success ful than mond primarily
ment 2
An alternator regulator basically controls the field current, as in Fig. 1, and the switching mode is often used to reduce

Electronic ignition. Electronic ignition is interesting in the way timing information is derived and in spark generation. The source of timing has now generally polarized into two major groups, the mag-
netic pickup, where a rotating part of the netic pickup, where a rotating part of the
engine modulates the flux linking a coil, and the optical system, where a light beam
is interrupted ${ }^{3}$. Both of the above use th existing centrifugal advance mechanism, which is not devoid of drawbacks. A not which uses an the Bowstock system hich uses an r.f.-excited capacitance ransducer to eliminate the advance mech There
There are now several variations in th sark generator design. In the inductive tored in the coil is $1 / 2 L_{\mathrm{p}} I^{2}$ ioules. Th primary current has to be limited to the hich the mechanical contacts can handl be relatively high to allow suffiace has to nergy. The time taken for primary cur ent to build up in that inductance reduce park energy at high revolutions, even i een absence of points bounce. Replace can handle a higher current means that the inductance can be greatly reduced, allow gh spark energy to be maintained to gher revolutions. It follows that the main gnition unit will not be realised if the appropriate low-inductance coil is not also fitted.
All commercial inductive-discharg exception of the Bowstock systew with the employs some original thinking. As shown in Fig. 3, this system uses a matching ansformer between the coil and the amplifier, which is of the push-pull type to give a more rapid rate of flux change. The ductance from limiting the spark rate, and the makers claim 1200 sparks per second with undiminished energy. Also unique is the fact that no current flows from the spark.

In a capacitor-discharge system, shown in Fig. 4(a), a high-voltage inverter of firing, is discharged into the coil prim ary, which is used as a transformer. An equivalent circuit of the c.d. system is shown in Fig. 4(b). As the mutual inducance of the coil, L_{m}, is an order greater neglected, which simplifies the circuit to that of Fig. 4(c). The resonant frequency can be stated as

$$
\omega_{0}=\frac{1}{\sqrt{L C_{\text {ser }}}}
$$

where $C_{\text {ser }}=\frac{C_{\mathrm{p}} \cdot C_{\mathrm{ss}}}{C_{\mathrm{p}}+C_{\mathrm{ss}}}$
The primary current displays a half-sine characteristic, as in Fig. 4(d). The dura ion of this waveform, using figures quoted by Hoyer ${ }^{5}$ is

$$
2 \pi \sqrt{31 \mu \mathrm{H} .240 \mathrm{nF}} \approx 10 \mu \mathrm{~s}
$$

This is extremely short, and in fact the actual spark will be shorter than this. Th rise time of the output voltage is corre spondingly short, and as a result resistiv doses before the spark gap breaks down are very small, which accounts for the unparalleled cold starting performance of the
c.d. system. Unfortunately, mixtures used in modern eng the weak the spark too short. Simply stated, a weak mixture is not homogeneous, but consists of patches of strong mixture floating abou in very weak stuff. If the spark arrives electrodes, a misfire results. Turbulence in the cylinder means that a spark maintained for about $300 \mu \mathrm{~s}$ will result in ignition, but this is obviously a function of engine de-

Fig. 2. Many inductive discharge system

Fig. 4. Capacitor-discharge system, in basic form at (a). Equivalent circuit at (b) is simplified to that at (c) of coil mutual inductance is ignored. Current waveform produced by circuit at (a) is
shown at (d), extended by circuit at (e) to waveform shown at (f). Flywheel diode in circuit at shown at (d), extended by circuit al
(g) allows long decay shown in (h)
c.d. systems, the spark can be ex mon in constructors' circuits is the config uration of Fig. 4(e), where the inverter rectifier forms a return current path, giving a current waveform shown in Fig. 4(f). In Fig. $4(\mathrm{~g})$, the flywheel diode across the shown in Fig. 4(h). Obviously, the spark duration should be ascertained by oscilloscope before using a c.d. system on a leanburning engine, particularly since the original coil is often used, and is not ecessarily optimal for a c.d. system. Refor their c.d. systems but, as with inductive discharge, the author has yet to see a reasoned argument for the use of matched coils in a motor magazine. The reader is referred to a better-than-average effort,
which also gives an interesting insight into the motor fraternity's colloquialisms.
Enhanced-spark systems have been the ubject of research for many years now but commercial availabiinty is relatively
recent. The system depends upon the fact at the voltage required to maintain the park is considerably less than the breakdown voltage of the spark plug.

32
A d.c. supply of several kilovolts is applied to the spark plug but, as this poten-
tial is below the breakdown voltage, no spark occurs until an e.h.t. pulse is superimposed upon the d.c. The spark gap then breaks down, and the d.c. supply
maintains the arc until the charge is exmaintains the arc until the charge is ex-
hausted. The principle has long been in use in strobe tubes and flash guns, where the trigger pulse generates an intense electric field around the tube, which breaks down and discharges the h.t. cap
citor until extinction voltage is reached ${ }^{\text {? }}$. The technique has also been used on electric arc welders to assist in establishing the arc. The components of such a system are under a great deal of stress, and it
remains to be seen how reliable commercial systems are. It should be possible to design a system which keeps working on the trigger in the event of the h.t. failing. A further concern is that erosion of the by the intense sparks generated by such systems. The greatest advantage would appear to be in application to lean-burning engines ${ }^{\text {s }}$.
This type of spark generation has come to be known as the plasma system, an
unfortunate term since it implies that the sparks generated by other systems are not also plasmic. Alongside the plethora of misnomers already perpetrated by the indussory, such as this latest is a drop in the ocean The distributor has a number of shortcomings, one of which is that condensation often forms inside the cap, which causes tracking, a surface breakdown of
insulation. The rotor arm does not the segments inside the distributor cap, so a second spark spans the gap, causing erosion of the electrodes. The use of a conventional distributor dictates long h.t. leads, leading to radio interference, and extra
leakage to ground to dissipate spark energy, as well as presenting a further spark gap which has to be broken down. A system under investigation at the moment replaces the distributor with reed switches. This approach must reduce lead
lengths and interference of such a system has to be questioned.
An alternative is to use one coil per cylinder, which is extravagant. There is, however, a compromise. In engines having single-plane crankshafts, whenever one
piston rises on the compression stroke another is rising on the exhaust stroke There is no reason why the two cylinders should not spark together, as the exhausting cylinder would not be affected. With this approach only two coils would
be required for a four-cylinder engine. Distributorless two-cylinder engines have used the principle successfully for many years now. As the two coils fire alternately, the effective dwell angle is doubled, makattractive.

Fuel-injection systems eliminate the car-
burettor by injecting the fuel directly into burettor by injecting the fuel directly into the combustion chamber, or, more comthe valve. Early fuel-injection systems

Fig. 5. Ba
injection
were entirely mechanical, and their unre liability made them as popular as lead ba oons; indeed the permanent repair for some was to fit a carburettor. The advent bility is more a function of what ren afforded rather than what was physically possible.
A normal carburettor responds to and engine temperature anifold vacuum and engine temperature. Additionally,
most modern vehicles have some form of emperature-controlled air intake to prevent icing and to eliminate yet another variable. Some carburettors ${ }^{9}$ can adjust hemselves for changes in atmospheric the input parameters are sensed by variety of transducers (shown in Fig, 5) which feed the control unit. This device ontrols solenoid-operated valves which dmit fuel from a pressure-stabilized line as the inlet valve opens, so the occu requires an input to describe the rotational position of the engine: any of the device used to replace the contact breaker are used to calculate the input parameters ar used to calculate the mass-per-unit-time
airflow into each cylinder, because this dictates the amount of fuel to be injected in conjunction with the mixture strength required. By sensing the inlet air temperacomes redundant. The system in beobvious application for a microprocessor which can be programmed to account for transducer calibration constants, and can perform Gas Law calculations on the in puts to accurately. assess the mass flow. ditions can be stored as lookup tables in r.o.m., so that one basic system could be adapted to a range of engines simply by
The advantages of fuel injection are that
high volumetric efficiency can theoretically be obtained in the absence of an inlet
venturi, and that on multi-cylinder engines, much weight can be saved by replacing rows of carburettors, since the weight of a fuel-injection system grows little with the number of cylinders. These features more relevant to everyday motoring is the action of a fuel-injection system on the overrun, i.e. when decelerating with the throttle closed. With a carburettor system, the closed throttle causes high manifold vacuum which evaporates condensed fuel
from the manifold walls. The resulting rich mixture causes a puff of black smoke to emanate from the exhaust. To meet U.S. emissions legislation, carburettors
fairly bristle with devices to alleviate this airly bristle with devices to alleviate thi problem. The fuel injection system simply circumstances, a trick which diesel engines have been doing for years. This may ex plain why both fuel injection and diese engines are renascent in the U.S.A. One interesting application of fuel injecapproach, is to change the number of cylinders in use, depending on the load. The rgument for this is that by using, say our cylinders of an eight-cylinder engine to generate half the maximum engine maximum compression and therefore maximum efficiency, whereas all eight cyl ders would be working at part compres sion to achieve the same power output
The latest Cadillac V8,6,4 engine use three different configurations, dependent on load, and a seven-segment indicator on he dashboard relays the number of cyliners in use

Control

Automatic transmission. Theoretically, the advantages of automatic transmission are many, but they have to be weighed
against the drawbacks of currently avail able units. Relieving the driver of gear

WIRELESS WORLDAUGUST 1981
shiftuing means that the engine should al ways be running at an efficient speed, and that the driver can concentrate more on the road. n heavy tram ic,
matic transmission are compelling. With some notable exceptions, curren automatic gearboxes rely on a torque convertor in order to skimp on the number of ratios provided. A torque convertor is
supposed to be a kind of variable-ratio torque transformer whose task is to pass engine power to the gearbox proper. Unfortunately, rather a lot of power is wasted as heat in current units. In order to prevent overheating, the convertor is dethat little power can be produced at low roadspeeds. As a result, the acceleration of three-ratio automatics from rest is pedestrian, and that of two-speed automatics can be measured with a calendar. The heat
generated by the convertor represents generated by the convertor represents
wasted fuel, so as a palliative, recent units incorporate a lockup clutch which is used when cruising.
The exceptions to the above have been where the designer has kept the transmis-
sion within some efficiency guidelines. In sion within some efficiency guidelines. In
this respect the French have a clear lead. The most efficient types use either a conventional clutch and gears, hydraulically operated, or electromagnetic powder
clutches. Power losses in these systems clutches. Power losses in these systems-
should be no worse than in manual transmissions, and acceleration and economy are about the same. The most sophis ticated are electronically controlled, using such input parameters as road speed and override controls and kickdown switches Current automatic transmissions have to be forced into low gear by the driver for long descents to avoid overheating the brakes: there is no reason why an intelli condition itself. The narrow power band of modern o.h.c. engines, together with an extending motorway system, is dictating trend to more gear ratios, five now being fairly common in manual transmissions. matic gearboxes with as many as eigh ratios, controlled by microprocessors, as in Fig. 6. The gearbox itself need not be particularly complicated, since eight ratio can be obtained by cascading three epicy-
clic reducing stages, which could be engaged in binary combinations. In top gear such a device would be extremely efficient as all the stages would be locked up, with no relative movement of the gears.

Electrical system. Legislation and social trends have made the electrical system of the modern car very complicated indeed with devices like rear fog lights and hazard warning lights being introduced to counte today's conditions.
The driver has to be able to operate
many different controls within easy reach many different controls within easy reach,
and to see instruments and the road. Hi body has to be kept warm, and supplied with fresh air, and his ears often require to be supplied with sounds of his choice. He as well as hoping that in the event of an

ig. 6. Eight-speed automatic gearbox with icro processes inputs atio, controlling hydraulic clutches with solenoid valves Fig. 7. Common-bus vehicle wiring,
showing load switching and transference of data to display

accident he will not be injured by any of the hardware supplying these needs. The constraints of the above cause the dashboard area to be the most densely packed printed circuits were adopted to simplify some of the dashboard wiring, and multifunction stalk switches on the steer ing column also help to reduce the clutter lot to be desired. In an attempt to further simplify the hysical arrangement of vehicle wiring, system has been proposed whereby th battery is connected to every electrical de throughout the vehicle. The outer braid is sed as the power conductor, the inne onductor being a serial, multiplexed control line, which is driven by a control unit situated next to the driver, as in Fig. Techniques, devices connected to the cable are controlled by transmitting a unique

Control panel for Smith's Industries electronic heater system. Mass of levers in siting of panel. Heading picture is artist's mpression of dashboard of the future, alogue and digital splays.
daress, followed by a control word. Dat ansmission in both directions would be possible, so that, for example, one node o ransducer sending data to the dashboar display. In order to generate addresses and codes, to arbitrate line use and interface with driver controls, a microprocesso reat degree of both signal and hardwar redundancy would be required to ensur reliability, as a failure would be rathe crippling.

To be continued

References

1. Alternator regulator. J. R. Watkinson 2. Joseph Lucas, the Dark Horse. Electronic components May 1969 .
2. Optical Contact 3. Optical Contact Breaker J. R. Wh 4. Electronic Ignition Techniques. J. R. Wat kinson. Wireless World July 1974 . 5. Electronic Ignition Systems for Motor Cars. furgen Hoyer. Semiconduccorrs 1974-3
3. Electronic Ignition. Hot Car. Feb 7. Readers' Letters. Wireless World Nov. 1980 and Apr. 1981 .
4. Big Burn Theory. David Vizard. Autocar 7 8. Big Burn Theory. David Vizard. Autocar 9. Weber Carburettors Tuning Manual. SpA E. Weber Bologna.

Record RAE entry

A record number of candidates, about 5500 , sat the Radio Amateurs' Examination in May, and this is sure to be reflected the next few months. This year has seen the completion of the G8AAA sequence of lass B callsigns and the new G6-three letter calls are already beyond G6CAA Class A licences have reached beyond teur licences by early June was ove 32,500.
In terms of population percentage however, the UK tends to lag well behind such countries as the USA, Japan, New position in West Germany (where for number of years licence totals ran neck and neck with those of the UK) shows tha country now ahead by more Inan ic, of th RAE papers set in December 1980, it is only fair to report that significantly les adverse comment has been received on the questions set in May, and generally these do appear to have had rather more rele-
vance to what people need to know to operate modern equipment without causing interference to other users of the radio frequency spectrum. That having been said, there is no doubt that the inherent problems remain unsolved, and the techni-
cal level remains significantly higher in the specimen questions issued by the City \& Guilds Institute.
And what, for example, does one make of such a question as: "The advantage of
keying the buffer stage in a telegraphy keying the buffer stage in a telegraphy
transmitter is: (a) no energy reaches the aerial during key-up; (b) spurious responses are minimized; (c) key-clicks are absent; (d) the oscillator frequency re55)? As
keying power amplifier stages (and yarious stages, nations of these in differential-keying arrangements) I have no hesitation in label ing this question, in this form, as modern practice! And, once again, the questions on radio propagation are confused and to to high a leve

Technical exams

The problems inherent in providing a sensible "entry examination" for what is inended to be a "self-training" service hould not be underestimated; this is particularly true in countries such as the UK mination is held, without any form of "incentive" or "novice" licensing. In recent onths, apart from my own criticisms,
conduct of amateur examinations have been expressed by amateurs, or would-be mateurs, in a number of countries, inthe USA. One has to accept that the hobby has changed a great deal over the past two decades; that, whereas 30 years ago a high proportion of transment used by ancillary equipment used by newly
licensed amateurs was home-built, this is no longer true.
Some of the critics want examinations at a higher technical level; others want a "driving licence" approach in which it is accepted that it is possible to operate mod
ern equipment without fully under standing the circuit design. A few typica comments are:
"The present form of examination is ludicrous . . . the syllabus needs to be trimmed to the must know level rather than including 'nice to know' parameters' (New Zealand).
"Exams should be designed so that, tests will learn what they need to take th operate competently a station and to have an idea of how to fix one . . . amateur radio is effective in allowing thousands of untrained persons an opportunity to lear through experience" (USA)

West Germany publishes a brochure ders intended for the examining committee, but it is available to the public and most of the examination questions are exactly the sam as in this official publication.... we now
have 'persons licensed to participate on amateur frequencies' "(West Germany). There is another aspect of this matter. It could be argued that licensing and examination policy in the UK has led in recent
years to undue concentration of years to undue concentration of amateur amateur band, while at the same time many of the h.f. and u.h.f. bands are now relatively "underpopulated", a situation having many potential dangers and disad vantages.

From all quarters

The RSGB estimate that some 7000 people attended the 1981 National Amateur Radio Exhibition at Alexandra Palace, and certainly at times it was quite a struggle to get near the exhibits! About 50 traders supported the event and the 'talk-in' stations
registered some 2000 contacts. The 1982 registered some 2000 contacts. The 1982
event is due to be held in the new Alexandra Palace Pavilion from April 22 to 24, 1982.
British amateurs will be watching closely to see whether prices of Japanese changes in the exchange rates, in view of the lack of any noticeable effect when the rate became more favourable to the $£$ ster-
ling. Many complaints have been heard about the lack of competitive pricing by British importers, although "price negoating" is not unknown.
iation, formed originally in 1949 As the British Old Timers Association, is opening its ranks to all those who can show evidence of having been interested in the hobey, either the receiving or transmitting
side, for a minimum of 25 years. Previously membership has been open only to those who have held a transmitting icence continuously for 25 years. Current membership is over 550. RAOTA hold the callsign G2OT and a regular 3.5MHz net is held on Thursday mornings a
la who was originally licensed as TXK before ('Dud War I. Vice-president is F. J ('Dud') Charman, G6CJ.
Application forms from Miss May iills, Long mond House, Fo Hills, Long Lane, East Finchley, London
Radio-control modellers continue to have problems due to interference from legat c.b. operation and are not convince that all will be well when (and if) c.b nels. The alternative model-control frequency of 35 MHz is available only for use with model aircraft.

Running IARU

Views in support of major changes in the the International Amd administration of have been put forward by the oversea liaison officers of the New Zealand Association of Radio Transmitters: Arthur Godfrey, ZL1HV and Fred Johnson
ZL2AMI, For over 50 years ZL2AMJ. For over 50 years IARU headquarters has been administered by. the
American Radio Relay League with its officers "arbitrarily selected rather than democratically elected" the New Zea landers note. They suggest: (1) IARU should have an executive elected by the
member-societies; (2) administrative work member-societies; (2) administrative work nizations, who would implement policy "decided by the HQ executive after due consultation with regional executives who
in turn have sought the member societies and reached a consensus".
It is suggested that a measure of decentralisation would permit more use to be made of volunteers and so reduce the need for professional administrators. The recent
Region 1 IARU conference at Brighton highlighted a rather different problem: important new recommendations and resolutions can be introduced at a very late stage
and then adopted or reiected without referand then adopted or rejected without reference back to member-societies.
PAT HAWKER, G3VA

Simplified design of dc power supplies

Design considerations and formulae for common circuit configurations

by J. C. S. Richards

Although capacitance smoothed dc power supplies are common electronic circuits, surprisingly little has been written on how to des published gives the impression easonably accurate prediction of performance demands either a computer or an extensive set of graphs and tables such as those of over thirty years. This article describes a few simple
approximations to give formulae which are easy to use and accurat enough for most purposes.
o simplify the design procedure it is current in the system are independent of the size of the reservoir capacitance C, provided it is large enough for the peak-topeak ripple voltage, $V_{\text {rip }}$, across it to be a mall fraction, say 20%, of the dc voltage. easily calculated by taking C to be infinite. The ripple voltage is conservatively given

$$
V_{\mathrm{rip}}=n I_{\mathrm{DC}} /(2 f C)
$$

(1)
where I_{DC} is the dc output, f is the mains frequency, n is 1 for the circuits in Fig. 1, approximation for $V_{\text {rip }}$ is given in equation 11. With 50 Hz mains, $I_{\mathrm{DC}}=1 \mathrm{~A}$ and $\mathrm{C}=10,000 \mu \mathrm{~F}, V_{\text {rip }}$ is about 1 V for a fullA second
A second assumption concerns $V_{\text {rece }}$, the forward voltage drop in the rectifiers, which depends on the rectifier peak cur-
rent but is unlikely to be more than 1.5 V for a silicon device. The design procedure assumes that the rectifiers are ideal, infi-
nite resistance in the reverse direction and zero resistance in the forward direction. When calculating the dc output voltage, V_{DC}, from a specified transformer, subtract $V_{\text {rec }}$ from the value obtained with ideal rectifiers. When choosing a transfor-
mer, start by adding $V_{\text {rec }}$ to the required value of V_{DC}. Except for very low currents, $V_{\text {rec }}$ should be taken as 1 V per diode, reec. 2 V for a a bridge rectifier.
Leakage in the electrolytic capacitor and in Leakage in the electrolytic capacitor and in any reverse biased rectifiers causes a
voltage drop of up to 0.5 V in the forward biased rectifiers. However, V_{DC} is usually calculated at zero output current so that components with a suitable voltage rating

(a)

(c)
can be chosen, and it is therefore advisable to consider $V_{\text {rec }}$ as $z e r o$.

Transformer considerations Copper losses are important when deterReady made transformers are usually des cribed by some of the following parameters.
ters.
V_{p} - nominal r.m.s. primary voltage.
$I_{\mathrm{R}}-$ rated r.m.s. secondary current.
$I_{\mathrm{R}}-$ rated r.m.s. secondary current.
$V_{\mathrm{R}}-$ rated r.m.s. secondary voltage or V_{R} - rated r.m.s. secondary voltage or
the secondary voltage when the current is
$V_{\text {oc }}$ - open circuit r.m.s. secondary voltage.
$r-$ regulation or $\left(V_{\text {oc }}-V_{\mathrm{R}}\right) / V_{\mathrm{R}}$
For a custom designed transformer or one whose parameters are found by meatities are usually
R_{1} and R_{2} - primary and secondary resistances.
$n-$ turns ratio, given by $V_{\mathrm{p}} / V_{\text {oc }}$
$R_{\mathrm{s}}-$ output resistan
$R_{\mathrm{s}}-$ output resistance, given
$\left(R_{1} / n^{2}+R^{2}\right)$.
Because simplified design methods are particularly useful when only a few items are needed and off-the-shelf transformers are used, the formulae below use the first set of parameters. If the second set is pre-
ferred, a conversion can be achieved using

(d)

Fig. 1. Full-wave rectifier circuits. (a) bridge, (b) dual bridge, (c) centre-tapped bridge, (d) two phase. In the design ormulae for the bridge circuit, V_{P} and I_{A} wo-phase circuit, the rating of each secondary is $V_{R}, 1 / 2 l_{R}$.

Fig. 2(a). Half-wave circuit, (b) symmetrical
voltage doubler.

(a)

(b)
the relations
$\begin{aligned}(1+r) I_{\mathrm{R}} / r & =V_{\mathrm{oc}} / R_{\mathrm{s}} \\ (1+r) V_{\mathrm{R}} & =V_{\mathrm{oc}}\end{aligned}$
Tolerances are rarely quoted for transopen circuit secondary voltage to be 3% adrift and the regulation r, which is often given as a typical or a maximum value for a
broad range of transformer, to be 10 or broad range of transformer, to be 10 or
20% different. However, these errors usually combine to make the full load voltage within about 2% of its nominal value.
When
When a transformer has more than one secondary winding, the variation of output
voltage with load becomes more complicated because current drawn from one secondary affects the voltages on the rest. However, for a transformer with two similar secondaries each passing the same erms of $V_{\mathrm{R}}, I_{\mathrm{R}}$ and r as above. This covers the series and parallel connection of secondaries and the rectifier circuits in Fig. 1(b) and (c). For the two-phase circuit secondary is the same, but the current flows in only one secondary at a time. To compare this circuit with a bridge rectifier using both secondaries in parallel, suppose hat $V_{\mathrm{R}}, I_{\mathrm{R}}, r, R_{1}, R_{2}$ and R_{s} are the ries are in parallel. In this case the rating of each secondary is $1 / 2 I_{\mathrm{R}}$ and its resistance is $2 R_{2}$. If current is taken from only one secondary instead of from both in parallel, drawn without overheating is reduced to $\mathrm{R}_{\mathrm{R}} / k^{1 / 2}$ and the effective output resistance is ncreased to $k R_{\mathrm{s}}$, where
$k=\left(2 R_{2}+R_{1} / n^{2}\right) /\left(R_{2}+R_{1} / n^{2}\right) \quad$ (4) The value of k must lie between 1 and 2 , designed to have equal primary and secondary copper losses in normal operation.

Design formulae

characteristic of capacitance smoothed ectifier circuits is that the currents in the transformer and rectifier are pulsed. The performance is easily calculated 2θ, is known, and in the an proximate formulae below, θ is expressed in radians.
To find the half angle of flow θ, $\theta=1.494 x^{1 / 3}+0.111 x$
where $x=A_{1}[r /(1+r)]\left(I_{\mathrm{DC}} / I_{\mathrm{R}}\right)$.
hase, and $A_{1}=2$ for a half- a twooubler circuit. The second term may or Fored when $x<0.05$.
$V_{\mathrm{DC}}+V_{\mathrm{rec}}=\sqrt{2}(1+r) A_{2} V_{\mathrm{R}} \cos \theta$ (6)
where $A_{2}=1$ except for the doubler circuit here $A_{2}=2$.
For the r.m.s. transformer current I_{T},

$$
\begin{equation*}
I_{\mathrm{T}} / I_{\mathrm{DC}}=1.37 A_{3} / \theta^{1 / 2} \tag{7}
\end{equation*}
$$

$A_{3}=\sqrt{2}$ for a half-wave, and $A_{3}=2$ for a
doubler circuit. For the repet

$$
I_{\mathrm{p}} / I_{\mathrm{DC}}=2.36 A_{4} / \theta
$$ $A=2$, bridge or two-phase, and For the r.m.s. capacitor current I_{C},

$$
\begin{equation*}
I_{\mathrm{C}} / I_{\mathrm{DC}}=\left(A_{5} I_{\mathrm{T}} / I_{\mathrm{DC}}{ }^{2}-1\right)^{1,} \tag{9}
\end{equation*}
$$

where $A_{5}=1$ except for the doubler circui where $A_{s}=1$ exce
where $A_{s}=1 / 2$.
For the maximum permitted dc current I_{m}, which occurs when $I_{\mathrm{T}}=I_{\mathrm{R}}$,

$$
I_{\mathrm{m}} / I_{\mathrm{R}}=0.87 A_{6}\left[r(1+r)^{1 / 5}\right.
$$ two-phase, $A_{6}=0.6$ for a

$A_{6}=1 / 2$ for a doubler circuit.
$A_{6}=1 / 2$ for a doubler circuit.
For the peak-to-peak ripple voltage $V_{\text {rip }}$,
$V_{\text {rip }}=A_{7} I_{\mathrm{DC}}\left(1-2 A_{8} \theta / \pi\right) /(2 C f) \quad$ (11) where $A_{7}=A_{8}=1$ for a bridge or twophase, $A_{7}=2$ and $A_{8}=1 / 2$ for a half-wave, $A_{7}=2$ and $A_{8}=1$ for a doubler circuit. The .m.s. value of the ripple is about $0.3 V_{\text {rip }}$. More exact forms of most of these forfrom the theory described later. However, any errors introduced by the approximations are nearly always $<3 \%$, and more usually $<1 \%$. Also, errors arising deriving the "exact" formulae and from inaccurate specification of the transformer are likely to be more significant. In practice the total discrepancy between calculated and measured values of V_{DC} has
rarely exceeded 1 V or 5%. arely exceeded 1V or 5\%

Choosing a circuit

The choice of circuit is usually between a bridge and a two-phase design. Overall the
two-phase circuit is usually better and wo-phase circuit is usually better and cheaper at low voltages and the bridge in cost and efficiency are small and often less important than the availability of components.
For dual supplies the separate bridges of Fig. 1 (b) allow flexibility in earthing etc, is the most economic way of obtaining positive and negative rails. The only important advantage of a half-wave circuit as hown in Fig. 2 (a) is simplicity. The transformer is used inefficiently, flux in the is poor and the ripple voltage is double that of a full-wave type using the same capacithe symmetrical half-wave doubler in Fig. 2(b) avoids dc polarisation in the frequency is twice that of the supply, and a high dc voltage can conveniently be obtained using components with a relatively ow voltage rating.
The available direct current I_{m}, the corresponding dc voltage V_{m} and the open
circuit dc voltage V_{o}, with allowance for he rectifier voltage drop $V_{\text {rec }}$, are plotted against r in Fig. 3 for a full-wave bridge. The trend of the curves is the same for all

WIRELESS WORLD AUGUST 198

Fig. 3. Graph for a bridge rectifier circuit Fhowing how the maximum available dc
surrentl the current $I_{\text {, }}$, the corresponding dc output
voltage V_{m}, and the open circuit dc voltage V_{o} vary with the regulation of a transformer rated at V_{R} and I_{R}.
circuits. Regulation of the dc supply is poor regulation makes a transfor even worse regulation. However, when r is very small, the transformer tends to be large and expensive for its VA capacity and $I_{\mathrm{m}} / I_{\mathrm{R}}$ becomes small. Also, it may be
necessary to introduce an external resistance to limit the peak rectifier current, thereby removing any advantage from a low r.
As a general guide, for outputs between 10 and 100 VA , a regulation of about 0.1 transformers are readily available. Transformers with a low power rating, $<10 \mathrm{VA}$, are not much cheaper than larger types and, because the relatively larger cooling
surface permits a higher surface permits a higher current density in
the copper, a larger fraction of the winding area is occupied by insulation which tends to make the copper losses and hence r relatively large.
For a bridge or a two-phase circuit which must provide V_{DC} at a maximum
current I_{DC}, the transformer V_{R} should be about $0.8\left(V_{\mathrm{DC}}+V_{\mathrm{rec}}\right)$ and I_{R} should be around $2 I_{\mathrm{DC}}$. When specifying V_{DC} for a supply which is to be stabilized, allow for the voltage drop in the stabilizer, typically
2 to 3 V , variations in mains voltage, about $\pm 10 \%$, and the minimum voltage across the capacitor which is less the V_{DC} by about $1 / 2 V_{\text {rip }}(0.5$ to 1 V). Considering all these factors, and allowing for a 1 to 2 V drop in the rectifiers, a stabilized output usually requires a transformer with a V_{R} of
about
$0.9\left(V_{\text {stab }}+5 \mathrm{~V}\right)$. Therefore, for the popular stabilized values of 5,12 and 15 V , the transformer voltages must be around 9 , 15 and 18 V respectively. It is permissible or I_{DC} to exceed I_{m} for periods much less stant, provided that I_{DC} is appropriately less than I_{m} at other times. Note that the thermal time constants of the rectifiers and

WIRELESS WORLD AUGUST 1981
capacitor are relatively short and their ratmum value of I_{DC}. mum value of IDC current, up to $\sqrt{2} I_{\mathrm{R}}(1+$ shed on a large he capacitor, so R $(1+r) / r$, can flow into an appropriate non-repetitivers must have ating. The repetitive peak voltage rating of the rectifiers should be at least $\sqrt{2}(1+r) V_{\mathrm{R}}$ for the bridge circuits and twice that value for the other circuits, with an allowance for mains voltage variations. The voltage rating of the capacitors should ratings should be increased by 30 to 50% for high reliability.

Design examples

For a supply with an output of 35 V dc at 0.6 A , less than 2 V peak-to-peak ripple, and a bridge rectifier with $V_{\text {rec }}=2 \mathrm{~V}$, a 37 or 30 V , and I_{D} about 2×0.6 or 1.2 A From equation 10 , the two secondaries in series can provide a dc current I_{m} of 0.85 A , and from equations 5 to 11 the following values are found. The figures in brackets wion with $\mathrm{C}=2,200 \mu \mathrm{~F}$

At $I_{\mathrm{DC}}=0, V_{\mathrm{DC}}=46.2 \mathrm{~V}(45.8 \mathrm{~V})$ $t I_{\mathrm{DC}}=0.6 \mathrm{~A}, \theta=0.473$,
$V_{\mathrm{DC}}=39.2 \mathrm{~V}(38.4 \mathrm{~V})$.

$$
\begin{gathered}
V_{\mathrm{DC}}=39.2 \mathrm{~V}(38.4 \mathrm{~V}) \\
I_{\mathrm{T}}=1.2 \mathrm{~A}, I_{\mathrm{p}}=3.0 \mathrm{~A}, I_{\mathrm{c}}=1 \mathrm{~A}, \\
V_{\text {rin }}=1.9 \mathrm{~V}(1.8 \mathrm{~V}) .
\end{gathered}
$$

$$
V_{\text {rip }}=1.9 \mathrm{~V}(1.8 \mathrm{~V}) .
$$

For a supply to provide 5 V at 1 A with less than IV peak-to-peak ripple, a trans $4.5 \mathrm{~V} \quad 1.3 \mathrm{~A}$, and a regulation figure of nominally 0.1 is suitable. The design equations for a bridge circuit with the secondaries in parallel give the values below measured values

$$
\begin{aligned}
& \text { At } I_{\mathrm{DC}}=0, V_{\mathrm{DC}}=7 \mathrm{~V}(6.1 \mathrm{~V}) \\
& \text { At } I_{\mathrm{DC}}=1 \mathrm{~A}, V_{\mathrm{DC}}=4.2 \mathrm{~V}(4.1 \mathrm{~V}), \\
& V_{\text {rip }}=0.7 \mathrm{~V}(0.6 \mathrm{~V}) .
\end{aligned}
$$

$\underset{k=1.5 \text {, the following values are obtained. }}{\text { For a }}$

$$
\begin{aligned}
& \text { At } I_{\mathrm{DC}}=0, V_{\mathrm{DC}}=7 \mathrm{~V}(6.6 \mathrm{~V}) \\
& \text { At } I_{\mathrm{DC}}=1 \mathrm{~A}, V_{\mathrm{DC}}=4.9 \mathrm{~V}(5.1 \mathrm{~V}), \\
& V_{\mathrm{rip}}=0.7 \mathrm{~V}(0.6 \mathrm{~V}) .
\end{aligned}
$$

These results clearly show that the two phase circuit is superior.

Derivation of equation

An equivalent circuit for a bridge rectifier current and voltage waveforms. The trans former is represented by a sinusoidal gen erator, $v_{1}=\left(V_{1} \cos \omega t\right)$, and an output resistance R_{s}.
When C is large enough, the voltage across it can be taken as constant and equal
to $V_{\text {D. }}$ Current i_{1} flows into C wheneve the magnitude of v_{1} is greater than V_{DC} i.e., when $\left|V_{1} \cos \omega t\right|>V_{\mathrm{DC}}$, or when ωt lies between $(n \pi-\theta)$ and $(n \pi+\theta)$, where n is $0, \pm 1, \pm 2 \ldots$ etc. and 2θ is the angle of
flow. In Fig. $4(\mathrm{~b}),\left|V_{1} \cos \omega t\right|$ and $V_{\text {Dc }}$ are flow. In Fig. 4(b), $\left|V_{1} \cos \omega t\right|$ and V_{DC} are

(e) Fig. 4(a). Equivalent circuit of a bridge
rectifier system. (b) Comparison of
V, $V_{1}(\cos \omega t)$ and $V_{D C}$ when C is infinite. (c)
Waveform of current i_{1} into the capacitor. (d) Waveform of transformer secondary current i_{T}. (e) Comparison of $f V_{1}$ cosot $)_{\text {/ }}$ dc output voltage.

Current i_{1} flows in pulses as shown in Fig 4(c), and is given by

$$
i_{1}=V_{1}(\cos \omega t-\cos \theta) / R_{\mathrm{s}}
$$

Because the average value of i_{1} must be $\sin \theta-\theta \cos \theta=1 / 2 \pi R_{\mathrm{s}} I_{\mathrm{DC}} / V_{1}$

$$
=\pi r I_{\mathrm{DC}}\left[2 \sqrt{2}(1+r) I_{\mathrm{R}}\right]
$$

This equation can be solved by trial and error or by expanding $\sin \theta$ and $\cos \theta$ as truncated power series in θ and then usin tion 5 above.
The transformer current is shown in Fig. 4(d) and has the same r.m.s. value I and peak value I_{p} as i_{1}. Therefore

$$
I_{\mathrm{T}}{ }^{2}=\frac{V_{1}^{2}(2 \theta+\theta \cos 2 \theta-1.5 \sin \theta)}{\left(\pi R^{2}\right)}(15)
$$

$I_{\mathrm{p}}=V_{1}(1-\cos \theta) / R_{\mathrm{s}}$
(16)

Expanding $\cos 2 \theta$ etc. as series in θ, and equations 7 and 8 . i_{1} divide From Fig. 4(a), the current i_{1} divide into two parts, I_{DC} and i_{c} in capacitor C
Because i_{c} has no dc component, the averBecause i_{c} has no dc component, the aver
age value of $i_{C} I_{\text {DC }}$ is zero, and equation 9 age value of $i_{\mathrm{c}} I_{\mathrm{DC}}$ is zero, and equation 9
follows. To find $I_{\mathrm{m}}, I_{\mathrm{T}}$ is made equal to I_{R} and the equation is solved by series expan sion to find θ_{m}, from which I_{m} follows by equation 13 .
For circuits
For circuits other than the bridge type the constants A_{1} to A_{8} can be found by
sketching the waveforms and making ap propriate adjustments to the integration limits when taking averages.
Effect of finite capacitance If the ripple voltage across capacitance C is assumed to be an exact triangle waveform,
the diagram in Fig. 4(e) is produced where the diagram in Fig. 4(e) is produced where
$\mid V_{1}$ cos $\omega t \mid$ and the voltage across C are shown together. The theory given above can be extended to find θ_{1}, θ_{2} and hence V_{DC} etc. ${ }^{2}$, but the improvement is small if
the ripple is small. For example, the change in $V_{D C}$ for a bridge system $\left.\begin{array}{l}\text { change in } V_{\mathrm{DC}} \text { for a bridge system is } \\ \text { around } 6\left(V_{\text {rip }} / V_{\mathrm{DC}}\right)^{2}\end{array} I_{l} /\left(r I_{\mathrm{DC}}\right)\right)^{2 / 3 / \%} \%$, which is $<3 \%$ provided that $V_{\text {rip }} / V_{\mathrm{DC}}$
<0.2 and a transformer with $r>0.05$ is <0.2 and a transformer with $r>0.05$ is used at or near its maximum capacity. I such an improvement is justified, a more
accurate method of predicting rectifier voltage drop should be used. Th discharge current out of C is I_{DC} therefore if C discharges for a time t_{1},

$$
V_{\mathrm{rip}} \simeq I_{\mathrm{DC} t_{1}} / C
$$

(17)

From Fig. 4(e) and because $\left(\theta_{1}+\theta_{2}\right)$ is 2θ, and the repetition tim of the ripple is $1 /(2 f)$,

$$
\begin{equation*}
t_{1} \simeq(1-2 \theta / \pi) /(2 f) \tag{18}
\end{equation*}
$$

so equation (11) follows, and (1) gives a rough overestimate.
Note that in the doubler circuit of Fig. capacitor is that of a half-wave circuit However, the two ripple waveforms are displaced from each other by half a cycle
and, when added, give a ripple waveform and, when added, give a ripple waveform with a fundamental frequency of twice th mains frequency.

References

References

1. Schade, O. H., "Analysis of rectifier opera
tion" Proc. $R E$. Vol tion", Proc. I.R.E.E., Voll .31, pp 3411-361, 1943 .
2. Leiders, A., "Single-phase rectifier circuits with CR filters", Electronic components and ap-
plications, Vol. 1, pp 153-165, 216-225, 1979.

Tone filters for electroni

organs - correction

On page 61 of Colin Pykett's article in the De
cember 1980 issule, please transpose the first five lines in columns two and three. And on page 60 ,
in column tree, please read $82 \mathrm{k} \Omega$ for R_{1} and in column three, please read $82 \mathrm{k} \Omega$ for

Programmable sound-generator interface

Z80 control of the AY-3-8910
by M. Shepherd
Although the AY-3-8910
programmable sound generator was
designed for use with a.
microprocessor, it tan only be directly
used with CP1600/1610 devices. This
inexpensive interface allows up to
four generators to be controlled by
the popular Z80 using i/o instructions.
The AY-3-8910 programmable sound gen-
erator, p.s.g., is a 40-pin i.c. containing 14
read/write registers which determine tone
frequency, noise amplitude and envelope
shape on three separate audio output chan-
nell. These fatures make the device suit-
able for computer control and, with simple
programming, a wide range of musical and

UEMNEDS TOTTHE EDITOD

BETTER R.F.I.
PROTECTION NEEDED It is clear from my own observations that a.m. citizens' band equipment operating on the
27 MHz frequency is now so firmly entrenched in this country that nothing, certainly not the belated appearance of a legal specification, wil
sweep it away. Whatever the rights and wron sweep it away. Whatever the rights and wrong
of the matter may be, there are just too many a.m. rigs in service for them to fade rapidly int obscurity come the glorious day.
I therefore issue a vehement plea for all manufacturere issue a vehement pleastic electronic equip ment to start looking seriously at one aspect of its performance which is usually wholly neg
lected - immunity to strong radio-frequenc lected - immunity to strong radio-rrequency
fields. Manufacturess ought to be forcefully reminded that if their apparatus is not intended to respond to
their part if it does. The extra components needed to secure excellent r.f.i. protection are
not expensive, and their presence would also
nosist lems arising from the use of amateur, p.m.r., broadcast or other radio transmitters close to ordinary households.
Perhaps reviewers
Perhaps reviewers might observe that an r.f.i.
susceptibility test would be a useful addition to their array of measurements. A number of reputable hi-fil manufacturers produce amplififer with appalling r.f.i. protection, and it seem
that performance in this respect is haphazard there being considerable differences between
various various models from the same manufacturer, protection.
protection.
Norman McLeo
Brighton
Brighton
Sussex

DISTORTION AT THE AMPLIFIER-SPEAKER INTERFACE
The two-part article "Intermodulation distorOtala and Lammasniemi in your November and December 1980 issues contains serious flaws. This article began life as an Audio Engi-
neering Society Convention preprint, No. 1336 neering Socieyty Convention preprint, No. 1336
of February/March 1978. Its authors are aware of at least three independent rebuttals of tha preprint, one of which has already been pub
lished. This published rebutal is by R. R. Cor lished. This published rebuttal is by R. R. Cor-
dell of Bell Telephone Laboratories, and is available as AES Convention preprint No. N153 of November 1979, under the title "Open-loop
output impedance and interface intermodula output impedance and interface intermodula-
tion distortion in audio power amplifiers". One of the unpublished rebuttals is by E. M. Cherr and G. K. Cambrell of Monash University,
originally submitted to the AES founnal in Feb ruary 1979, a revised manuscript was submitted in October 1980 under the title "Output stage for audio power amplifiers".
Cherry and Cambrell make the following points:
If an amplifier uses a common-emitter output tage then, if collector resistance can be varied without changing any other parameter, interfac
intermodulation distortion, i.i.m., increase
monotonically as collector resistance is reduced 2. If an amplifier using a given transistor has a common-emitter outpur stage, and in inis is
changed to the common-collector configuration and nothing else is changed except the phase of the feedback connection, i.i.m. at best remain
Taken together, 1 and 2 , run absolutely Taken together, 1 and 2 , run absolutely
counter to the suggested "rule" of providing low open-loop 1980, p. 56)
3. For prac
3. For practical purposes, a loudspeaker is passive and cannot iniect a signal back into an ampli-
fier. (a) The motional e.m.f. produced by sound incident on the loudspeaker cone from room or enclosure reflections of from other sources is minuscule compared with amplifier rated out put voltage. (b) Substantial motional e.m.f. results from the signal applied to a loudspeaker
However the substiution (or compensation) theorem of network theory shows that an activ network which models a loudspeaker and in cludes such a motional e.m.f. can be replaced
identically by the passive LRC network that completely models the driving-point impedance of the loudspeaker. A loudspeaker is strictly passive so far as any applied electrical signal
concerned, and there is no possibility of i.i.m as defined because there is no independent sig nal source in the load.
4. I.i.m. is proportional to a product of output proportionality depends on the constant of rcuit, but cannot exced the detail of the andard two-tone intermodulation test. II.i.m at given output current amplitudes cannot ex ceed standard intermodulation at the same current amplitudes.
Taken together, $3(\mathrm{a})$ and 4 suggest that th
distortion power produced in a real-life situatio by the interface intermodulation mechanism is minuscule compared with the distortion power mechanism. Edward M. Cherry
Deparment of Electrical Engineering
Clayaston, Victoria, Australia
The authorrs reply:
We are not aware of any rebuttals of our AES paper. The paper of Cordell is based on different premises from ours, i.e., Cordell postuconstant in the comparison, whereas our constant in the comparison, whereas our
analysis is based on the closed-loop distortion being held constant. This difference in bound
ary conditions taken into account, Cordell's reary conditions taken into account, Cordell's re-
sults are in agreement with ours and the paper sults are in agreement with ours and the paper
can hardly be considered a rebuttal. The two other references quoted are unknown to us, an will be considered if and when available.
The points the writer makes sound familiar The points the writer makes sound familiar to
us as if they were our own results taken from our paper:

1. This con
We assumed the amplififier closed-loop distortion to be constant, which is a real-life engineering consideration, as discussed in our paper. The tion is constant and that the amount of overal negative feedback varies with the collector resis-
tance. This leads to complete agreement with
our results, if allowance is made for the differen boundary conditions. However, we doubt if th writer's case could be realistic in practice.
2. Our theory shows that the i.i.m. in this case should in principle remain about the same just as the writer states. We cannot see any theoretical discrepancy here either. Nevertheless, this
kind of a hat-trick would be impossible in practice, and practical measurements show the common-emitter stage to be inferior because larger closed-loop distortion.
3 (a) We agree completely
3. (a) We agree completely with this point, as is
stated in our paper. (b) As far as the loud speaker is concerned, this is is iust a motter
sparer definition. We would wish to point out that the proposed i.i.m. measurement method was not conceived to simulate the physical loudspeaker, but just to expose the amplifier output port to such worst-case current and voltage
relationships which might occur when real loudspeaker loads are being driven.
4. This is a rephrasing of the opening paragraph
of Part 2 of our paper In be negligible as compared to the CCIF two-tone i.m. However, in a poorly designed amplifier, such as shown in our Fig. 14, it may equal in
magnitude the two-tone i.m., from our Figs. 15 and 17.
In conclusion, the letter does not seem to indicate any flaws in our paper, on the contrary Many a thing may seem controversial if viewed
from different positions. However, a more thorough examination which takes into account the different sets of boundary conditions shows no conflict to exist.

Matti Otala, Эorma Lammasniemi

Technical Research Centre of Finland

THE DEATH OF

ELECTRIC CURRENT
Mr Ivor Catt's very interesting article in your December 1980 issue obviously calls for some
discussion, since, if he is correct in his analysis it would imply that a lot of our fundamental teaching in electronics is wrong. Let me recapitulate first, simply, on the Nor-
mal theory of electric current flow. It is now mid theory of electric current flow. It is now
widely tuaght that in the following circuit the electric current consists of a flow of electrons, between adiacent atoms which make up the ing, or being, elements of electric charge. The

Energy converted
to heat at
1 joule s.send
1 1 watt in 1 , oule $/$ /sectond
$=1$
$=1$ watt in
resistance
charges are given energy by the electromotive charges are given energy by the electromotive
force of the battery, such that if 1 coulomb (6.24
$\times 10^{18}$ electrons) of $\times 11^{18}$ electrons) of charge is raised through a of energy; which is then expended when the current (rate of flow of charge) flows through
flowing through the wire at 1 coulomb/s, then
the current is said to be 1 ampere, and the the current is said to be 1 ampere, and the
resistance of the circuit would be 1 omp; while
the energy of the energy of the current would be dissipated
(e.g. converted into heat) by resistance, at the (e.g. converted into heat)
rate of 1 watt, or 1 joule/s.
 had, for example, in making colour television radio and stereo systems available to so many
people, that these circuit fundamentals must be people, that these circuit fundamentals must be
quite a valid and useful way of thinking. I also at a loss to see how Mr Catt can develop his
theory of the battery and rest also a a loss to see how Mr Catt can develop his
theory of the battery and resistor, with th
'energy current' 'energy current' entering the resistor sideway
(on p. 80, December issue) into giving such useful quantitative concepts as the above circuit does; but maybe he doesn't want to, at present
It would seem, however, It would seem, however, that he is at least
asking us to lay aside our hypotheses about the existence of protons, electrons, and therefore presumably even atoms, for we are told that electric charge does not exist, and nothing flows
in a conductor. This could indeed be revolu-
ionary.
As a philospher, I am only in sympathy with
. Mr Catt's initiative. Although I can't really fol.
low the flight of his imagination at present, low the fight of his imagination at present,
have argued elsewhere ("Mind \& Machine,"
The The Listener, Oct. 17th, 1963) that the concepts
and inventions of physics, and indeed the Uniand inventions of physics, and indeed the Uni-
verse itself, should be understood in terms of the concept of imagination, e.g. of the writing of
scientists, and not vice versa. My attempt to scientists, and not vice versa. My attempt to
argue this viewpoint however, i.e. that scientific
 ultimate truth, was not very well received, and
was accused of 'dangerous obscurantism'. I was accused of dangerous obscurantism'. It
may I suppose, one day be possible to explain may, limppose, one day be possible to explain
the imaging or 'imagining' function of the
brain in hhysical conceps. brain in physical concepts. However, although
wish Mr Catt every puccess in developong his wish Mr Catt every success in developing his
imagination and new theories, Ithink he should
be warned be warned, or reminded, that the imagination of
scientists does have to be supported or tested, scientists does have to be supported, or tested,
by observations and experiments. In short, it by observations and experiments. In short, it
seems that he may be unwise in reviving a Heaviside theory, published in 1892, and in quoting J. A. Fleming (1898) and Clerk, Maxwell ((1831-
1879), who lived before the discovery of the 1879), who lived before the discovery of the
electron (1897), through the experiments of J. J. electron (1897), through the experiments of J. J.
Thomson, had become well known and
accepted. accepted.
$\begin{aligned} & \text { Pexer G.M. Dawe } \\ & \text { Oxford }\end{aligned}$

The author replies:
Mr Dawe's recapitulation, para. 2, deals with a
so-called "steady state" situation. Conventional theory corers for these quite well; it was de-
veloped for that purpose veloped for canot cope with the transient
tional theory cannot tional theory cannot cope with the transient
condition, as we shall see. Consider the situation $1 / 4$ nanosecond after we close the switches in the
diagram below. diagram below

A voltage-current step has advanced three inches to the right. Behind the step , there is a
voltage drop between the wires. The E lines must terminate on electrons in the lower wire. It
follows that behind the step the lower conductor follows that behind the step the lower conductor
contains more electronics per inch than is concontains more electronics per inch than is con-
tained in the uncharged section ahead of the
step. step.
lectrons must appear in farther forward, ext terminate the new E lines involved as α th voltage difference which now exists in the next inch of transmission line.
Where does the elect
Where does the electron come from to fill the
next gap α as the step front advances forward? It cannot be one (say β) from behind the ste because this electron is not rravelling at the time, it would have to travel at the speed of light, since the voltage-current step is travelling forward at the speed of light for tor the dielectric, A central feature of conventional theory $(\mathbb{N}$ (slower than the speed of light. Therefor Theory N , where electric current is the cause
and $E \times H$ field an effect, breaks down for the simple reason that a cause travelling slower than the speed of light cannot create an effect travelling $a t$ the speed of light. It seems clear that if
we retain a dualistic theory $(\mathrm{N}$ or H$)$ the present discussion forces us to conclude that Theory H obtains; the cause must be the $E \times H$
field in the dielectric, energy current, which field in the dielectric, energy current, which
does travel at the speed of light, and the slower does travel at the speed of light, and the slower
electric current in the wire is merely an effect of that cause.
I would I would agree with Mr Dawe, para. 3, that
practical success would tend to indicate that our fundamental theory is sound. However, counterdinstances abound. Lacking sound theory, the Romans still built many impressive bridges
Like Mr Dawe, I shall use whatever suits me to Like Mr Dawe, I shall use whatever suits me to
calculate dissipation in resistors, etc. We do not calculate dissipation in resistors, etc. We do not
have to use the theory we believe, when it is
inconvenient inconvenient, rather than travel by another
more convenient path in our day-to-day affairs. Calculation of the steady current from a (car) battery to a resistor (car headlamp) will not
become the stamping ground for theoretical discord. Similarly, I think quite happily about how to avoid "losing the cold" in my deep freeze. There is a time and place for theories.
The policeman who charges you with driving The policeman who charges you with driving
without due care and attention should not have without due care and attention should not have
to bother with Newton's Laws of Motion, and is
not charging you for not charging you for ignoring them.
With regard to the last With regard to the last paragraph, the
electron is not necessary (indeed it creates major problems) in explaining the passage of a
TEM step guided between two conductors. Should it be necessary in other situations, it can
be expected to turn out to be be expected to turr out to be a standing wave
energy current. This was proposed by Schrö
dinger dinger. Junrenisos's's design of opsucd by schrö-
(Wireless World June 1979 , pages $45-47$) goes (Wireless World June 1979 , pages 45-47) goes
wrong because, like so many others, he is wrong because, like so many others, he is
trapped within the conceptual confines of the
sine wave. Once you drop the sine wave. Once you drop the sine wave, it is not
difficult to construct an "electron" out of difficult to construct an "electron" out of
energy current. (However, it would then be energy current. (However, it would then be
illogical to hold onto Theory N or Theory H ,
since energy current since encrgy current would then be bordered by
energy current (i.e electrons) energy current (i.e. electrons). Similarly, once it
is realized that a capacitor is a transmission line, it is not logical to coratain the alternate lumped L and C (transmission line) model for the trans-
mission line.) mission line.).
It hink the fir
I think the first part of the last paragraph, like
Osiander, Osiander, is wrong. It is a tragedy that virtually
all contemporary scientists are siding with the
mediaeval church against Galieo mediaeval church against Galileo. I stand with
Galileo, Bruno and Kepler, but unlike Bruno I shall not be burnt alive for it. (See M. Polyanyi, "Personal Knowlede", RKP 1958 , pop. 145 .
6.) As to the second part of the last para., I Im making discovery, not indulging in imagination. As to the electron, although I may allow the
existence of the standing-wave electron, I find existence of the standing-wave electron, I find
the billiard-ball electron incomprehensible.
Like Einstein Like Einstein, I do not accept the quantum.
(Max Born, "The Born-Einstein Letters", Mac-,
millan 1971, pp. 164, 168.$)$ However, this does removes the (possibly in other situations surviv
ing) electron from the theories of (a) the "steady ing electron from the theories of (a) the "steady
harged capacitor" and (b) "electric current in a wire".
Ivor Catt

HERBERT DINGLE
Perhaps I may be permitted to make a brief ssue on my late uncle Professor Dingle. Dr Wilkie writes: "Professor Dingle is described as an expert on relativity". He makes
no comment on this but later in his letter he says no comment on this but later in his letter he says
"Professor Dingle was a distinguished historian of science". The subtle implication is that h must be regarded as an historian who had no right to be delving into such abstruse matters a
the Theory of Relativity. This impression can best be corrected by quoting from his obituary in The Times of September 6th, 1978 . "his 'Relativity for All' (1922) appeared at a time understood the beeoryy. .ff this had been bent true, Dingle must be rated high among the six for his liste, Dingle
showed a profound grasp of relativity as a physical
theory combined with theory combined with a capacitry for presenting its, ,
as an esoteric mystery, but as a logical development of as an esoteric mystery, but as a logical development of
the mechanics of Newwon".
To this might hawe be To this might have been added the comment
that he met and discussed scientific matters with Einstein, a privilege that was denied to most his critics.
My other
My other point concerns my uncle's love of
gis good English. This was something he inherited
from his father and shared with his brother. It led him to avoid jargor whenever possible. D Wikikie, who evidently loves technical language,
finds this very tiresome; he holds the remarka finds this very tiresome; he holds the remarka
ble view that plain English is ambiguous and jargon is precise. I know from my own profes-
sion as a veteriny surgon sion as a veterinaryy surgeon just how mistaken
this is. Once people resort to iargon they make this is. Once people resort to argon they make
words mean whatever they want them to mean one only has to recall what happened to 'param eters' to realise that
I have not the knowledge to tell whether my
uncle's beliefs were correct, but I confess I an uncle's beliefs were correct, but I confess I am
not impressed by an opponent who admits to
difficulty in expressing his case in pain difficulty in expressing his case in plain English,
and who links Herbert Dingle's supporters with and who links Herbert Dingle's supporters with
people who believe the Earth to be flat. 'Flat Earther's', by the way, can be dealt with quite easily without resorting to technical language.
P. F. Dingle P.J. Dingle
Korfs Lynn
Norfolk

TELEVISION SETS FOR THE DEAF
I am glad that Mr Power has pointed out that hearing impaired people will not necessarily get
satisfactory listening satisfactory listening via a manufacturer's
installed outlet socket (May letters). WWen 15 per cent of the adult population have hearing per cent of ene adult popuation have hearing
difficulties seems appalling to me that none of
the manufacturers pays attention to the probthe manufacturers pays attention to the prob-
lem.
I wrote my original letter to you with my
tongue iust a tongue just a little in my yherek a I I know more
than a little about the problem. I was hoping to than a little about the problem. I was hoping to
draw a hail of fire from the various manufacturers but only Decca had anything to say.
May I conclude by May I conclude by saying that the problem is
not for the hearing impaired alone; it is a prob-
lem for their faniles and neighbours as not for the hearing impaired alone, it is a prob-
lem for their afilies and neiehbours as well.
One of the most common enquiries which I get
from the area around Southend is: "Can you do
something for my dear old Mum/Dad, he/she wants the television so loud it is driving us up the wall!
Fred Holloway
Ryyleigh Rayleigh
Essex

MAGNETIC RECORDING As an academic who has for some years been
teaching the above topic, teachind to Wireless World for this fairly regular
grateful feature which has been used as a source of update information. With reference to the review take up four points.
It is stated: "If the head gap is not at right-
angles to the edge of the tepe the first ero in angles to the edge of the tape, the first zero in
the response occurring at the frequency at the response occurring at the frequency at
which one edge of the recorded track is two half waves ahead of the other edge. Whilst this is highly desiriable, azimuth mis-
alignment is most important for replaving pre alignment is most important for replaying pre-
recorded tapes. Slight mis-alignment goes unnorecorded tapes. Sight mis-alignment goes unno
ticed if the machine replays one of its own
recordings recordings.

Though the actual bias frequency is not im-
thant . . the waveform of this bias signal is portant,\ldots. the
very significant.
The frequency may be very critical in of a radio/recorder system. The latter part of the statement is inconsistent with the use of the frequency modulated luminance carrier used as
bias signal for the chrominance component in bias signal for the chrominance component in
v.c.r. systems. Have the effects of a non-sinuv.c.r. systems. Have the effects of a non-sinu
soidal bias signal on audio distortion been measoidal bia
surd?
"Print-"Print-through will obviously be reduced by any increase in the thickness of either the tape or the coating."
Whilst I agree that an increase in base hickness reduces print-through, an increase in
coating thickness alone will, if anything, increase print-through. The thicker coating may now carry a greater magnitude of magnetic flux, particularly at lower frequencies, which in turn
will induce a greater print-through into adjacent will indu.
layers.
ally - a purely academic point - there is a continual interchange from imperial to metric
measurements and the use of c.g.g. and SI units tended to detract attention from an otherwise most useful review G.E.Lewis
Canterbury Colle

Cantertury, Kent

The author replies:

Mr Lewis raises a number of points that justify
some eadditional comment quite clear as to the meaning of his first point. Azimuth mis-alignment, i.e. the fact that the
recorded track is not at right angles to the edge of the tape, is the situation responsible for the poor high frequency performance provided by many cassette recordings. As Mr Lewis com-
ments, it is of no great significance if a recordin is replayed on the machine on which it was recorded, but azimuth mis-alignment intro-
duces considerable attenuation of the high freduces considerable attenuation of the high fre-
quencies if there is any significant difference in quencies if there is any significant difference
the gap alignent of the record and replay
teads. Extensive experience in assessing the heads. Extensive experience in assessing the
performance of many hundreds of domestic machines suggests
azimuth at right angles to the track edge, the azimuth at right angles to the
tandardised alignment location.
The actual bias frequency is of no great in portance as far as the magnetic recording
process is involved, but there are often other
(non-magnetic) reasons why one bias frequency
has advantages over some other frequency Beats between over some other frequency. frequency and a
Ben
fecorded frequency are a well known problem recorded frequency are a well known problem
that can be reduced by shifting the bias frequency. Many of the better domestic machines
actually include a control to ollow the bias fre-
quency to be shifted by a few kHz if birdie quency to be shifted by a few kHz if bircdie
whistles' appear when the machine is used, par-
ticularly with an f.m. receiver that has inadequate suppression of the subu-carriers.
It is well established that a distorted bias waveform is responsible for an increase in tape
noise. Even harmonics in the bias supply are
nom noise. Even harmonics in the bias supply are
substantially equivalent to the addition of a d.c. component to the record head current. I know
of no evidence that the distorted bias current of no evidence that the distorted bias current
leads to any significant increase in the distortion of the audio signal.
The extent of any print-through is a function
of the tape base thickness and the temperaure of the tape base thickness and the temperature dependence of the magnetic properties of the
coating. The effect of an increase in coating thickness is to move the frequency spectrum of
the print-through signal the print-through signal down the frequency
spectrum where it is generally less sigifant. spectrum where it is generally less significant.
Thie choice of units is a perpetual problem. Whe are in a cransition stage where several
systems of units are in eneral use so we comsystems of units are in egnerala use, so we com-
monly find that some dimensions are currently quoted in imperial or metric units and others in c.g.s. or SI units. I quoted the parameters in the
units in which they are currenty commonty units in which they are currently commonly
expressed expressed.
fames Moir

LOW-NOISE

AMPLIFICATION

In his "Introduction to low-noise amplifier design (April issue) Mr Foord falls into the old
booby trap of basing his method on transistor parameters which are not often published -
particularly remarkable in view of his introduc particularly remarkable in view of his introduc
tory remarks which recognize that "manufactory remarks which recognize that manufac
turers often fail to specify their transistor parameters in a convenient form". How many manufacturers specify y_{bb} in their ordinary data
sheets? The Mullard technical handbook gives it sheets? he Mumard fechici in chactor devices" in the general explanatory notes, but never gives its numerica
even do that! even do that!
f.C.D.Pratt
Leatherhead, Surres
The author replies:
I did appreciate the problem that manufacturers
do not specify ${ }_{\text {bl }}$, What I attempted to show in do not specify ${ }_{\mathrm{rb}}^{\mathrm{b}}$. What I attempted to show in
my article was that the collector current for the first stage of a pre-amp should dal ways se chosen
to be approximately correct for a iven source to be approximately correct for a given source
resistance. If the source impedance is low, then $r_{\text {resis }}{ }^{\text {rbes }}$ does become significant. Unfortunately we have to use $e_{\text {bbe }}$,or similar noise constants.
There is no other way. I gave the table covering There is no other way. 1 gave the table covering
a few transistors as a guide. For more detailed work where $1 / f$ noise is important r_{rb} can be split into two parts, and a $1 / f$ break point and
slope added. Motchenbacher and Fitchen give a slope added. Motchenbacher and Fitchen give
comprehensive table for 20 transistors, indicat comprehensive tabe for noise parameters for each1'. They also
ing for
give excellent desimn equations for noise and give excellent design equations for noise and gain, with practical results, for a great variety of
circuits. This is the best single reference on lowcircuits. This is the best sin
noise design I have read.
The most accurate measurement method for
r_{b} ' is by actually measuring thermal noise r_{b}, is by actually measuring thermal noise
against frequency for different operating condi against frequency for different operating condi-
tions. This is discussed by Unwin and Knott To give reasonable noise parameters in their
data sheets the manufacturers might have to
measure up to four parameters for each tran-
sistor. Under productions conditions this would
introduce a lower vield (higher cost) if the hitroduce a lower yield (higher cost) if the
parameters were guaranteed.
In their transistor data book Motorola do give In their transistor data book Motorola do give
comprehensive curves of noise figure against comprehensive curves of noise figure agains
frequency for quite a number of their tranfrequency for quite a number of their tran-
sistors. National Semiconductor publish a book-
let which relates their type numbers with a parsistors. National Seeicone numbers with a par-
let whicicr retaes their type
ticular process, and gives some noise curves for ticular process,
their processes.
their proce
A. Foord
Malvern
A. Foord
Malvern
Wors

References

1. Motchenba
2. Morchenbacher \& Fitchen. Low-nise Electronic
Design, John Wiley \& Sons , 1973 .
 determining base s.creading resistance, Proc. I.E.E.,
vol 127 , part 1 , no. 2 , April 1 1980 , p.53-61.

INTERFERENCE FROM MICROS
 As a radio amateur I encountered the same kind of trouble as Hugh D. Ford (March letters)

 of trouble as Hugh D. Ford (March letters),when using my Motorola 6800 evaluation kit, when using my Motorolat 6000 evaluation kit,
Apple II and TRS 80 . I got rid of the interference by shielding the system completely, which
is the least expensive measure in terms of time is the least expensive measure in terms of time
and money. Mains power is supplied through a and money. Mains power is supplied through a
filter and data ports are decoupled by by-pass capacitors.
In my opis
In my opinion today's microcomputers are
very prone to cause radio frequency interfervery prone to cause radio frequency interfer-
ence. This is made worse by the use of plastic cabinets, large p.c. boards, simple power
conter supplies and a minim
(decoupling capacitors).
(decoupling capacitors).
Suppliers of filters and shielding elements as,
for instance, R.F.I. Shielding Ltd of Braintree for instance, R.F.I. Shielding Ltd of Braintree advise their customers on how to tackle the
interference problem systematically. To my knowledge the only standardisation effort so fa has been undertraken by Verband Deutscher
Elektrotechniker (VDE Verlag GmbH, Bismarckstr. 33, D-100 Berlin 12) and details are discussed in VDE 0871 (radio interference suppression in high frequency equipment for
ISM and similar purposes) and in VDE 1877 (mM and similar purposes) and in VDE 187
(measurement of interference voltage and field strengths.
The cont
The contribution "Controlling electromag netic interference generated by a computer
system" in the September 1979 issue of Hewlet Packard $\mathcal{F o u r r a l}$ gives an idea of the complexity of the problems involved.
Application of such standards to commercial
products would, however, mean a higher sellin products would, , however, mean a higher selling
price. The FCC in the United States is setting specifications obliging designers to pay mor attention to e.m.i./r.f.f.i. problems (see $E D N, 1$
February 1981). Of course a lot of articles have been written on this subject, such as: "FCC computing equipment e.m.i. stan-
dards", dards", EDN March ,E.m.i. susceptibility testing of computer
system,"Comp Design, March 1980.
 "Design digital equipmen
dard " $E D N$, June $5,1980$.
"Good shielding techniques control e.m.i. Good shielding techniques control e.m.i.
and r.f.i.", $E D N$, February 18, 1981. QST, March 19, 1980.
QST, March 19,1980 .
Yes, we must learn more in this widenin field and training courses should be organized on e.m.i. control methods and procedures. A
label "Approved by VDE" or "Meets FCC rules" would certainly be an advantage in to day's highly competitive markets.
Decaunes Berna
Epalinges --
 Epalinges
swizerland

 .

WIRELESS WORLD AUGUST 1981
with the important result: the absence of phase
shift between beams upon rotation pointless to state that the experiment proves nothing as experiments don't prove theories,
they test them Elsewhere the author incorrectly they test them. Elsewhere the author incorrectly
represents Lorentz contraction (second order in v / c and of constant sign) as derivable from the very different Doppler effect (first order in v / c
and so potentially of both signs). I am also and so potentialy of both signs). I am als
unable to find meaning in many of his state-
ments on energy
of velocities.
A good discussion of the implication of the
Michelson-Morley experiment can be found in: Michelson-Morley experiment can be found in:
A. S. Eddington, "The Mathematical Theory of
Relativity", Cambridge University Press, 2nd Relativit
edition.
The e
editor's por encourage criticism of existing theory which encourage arciucism of eastly valid as well as bein imaginative and attractive to his reader. Th problem is a difficult one since more than a huff
and a puff are needed to bring down modern and a puff are needed to bring down modern
physics. May we look forward to more substantial attempts?
T.de Limelete
T.
The author replies
The euthor rephies
T. de Limelete enjoys Eddington's mathemat-
ics. The author of any good take his reader along a mathematical route fro Newton's laws of motion to the law of th conservation of energy and return via a differen Newton's time and space and its one dimensio ength, are absolute or concrete. All units of Newton's laws can be derived from the thre
fundmenental units of mass, time and length, and if their dimensions are not universally concrete for any reason, the mathematical route fron thematically either generate or destroy an infil nite amount of energy. Maxwell said on page 2 of his Treatise "A knowledge of the dimension lied to the equations resulting from any plieg to the equations resulting from any
lengthened investigation. The dimensions of every term of such an equation, with respect ach of the three fundamental units must be
same. If not the equation is absurd." Maxwell' mathematics were immaculate. I have merel applied Maxwell's test to the equations of mod ern theory. The equations are absurd. Fail
see how the adroit and deliberately secretive manipulation of the three fundamental units ca e described as honest
M. Gellard

SLOTTED CYLINDER

 AERIALSIn June letters Mr James referred to propagation
tests carried out by Philips and suggested that tests carried out by Philips and suggested that
better results would have been obtained at the better results would have been obtained, at the
higher frequencies (928MHz) if a form of
slotted cylinder aerial had been used instead of a slotted cylinder aerial had been used instead of a
quarter wave whip. quarter wave whip.
Earlier this year the RGB performed some
俍 similar propagation experiments in the
1296 MHz amateur band using horizontal polarisation and the aerials to which Mr James refers
in order to examine the potential of these frein order to examine the potential of hese fre-
quencies; a copy of the resulting paper was sent to the Home Office for their information.
This aerial is also known as the Alford slot, This aerial is also known as the Alford slot,
and is in some ways analagous to the vertically polarised co-linear. It produces horizontal polarisation with an omnidirectional pattern in the
horizontal plane, and achieves gain by reducing horizontal plane, and achieves gain by reducing
the beamwidth in the vertical plane. Those used
in our tests were made from thin walled metal

tube, 3 cm diameter and 48 cm long, wit about 0.5 cm wide along their length.

 The edges of the slot in fact form a twin w transmission iile which is continuously loadeby a shunt inductance formed by the rest of t cylinder. The phase velocity of a wave travellin
along the slot can then be several times that the free space velocity, in this case four time and so the distribution of the electric field along he slot can be a single electrical half wave over slot that is physically two wavelengths long
Thus the whole aperture is fed in phase, and gain of about 6 dBi was measured. Higher gain ould be achieved by using a longer tube and higher phase velocity.
These aerials were used at each end of both These aerials were used ato each end of both reivers with 2 dB noise figures, and one wat ansmitters giving an e.i.r.p. of 4W
Typical ranges were as follows: Typical rang suburbs
country
ountry $\quad \begin{aligned} & 1 \text { to } 3 \mathrm{~km} \\ & 2 \text { to } \mathrm{km} \\ & 3\end{aligned}$ aximum range between well sited mobiles wa
N.b.f.m. (8 kHz bandwidth) was used for ost of the tests and was found to be superior shorter ranges. S.s.b. increased the maximum
range, but at short and medium ranges the trange, but at short and medium ranges the
severe multipath effects in urban areas rendered severe multipath effects in urban areas
he s.s.b. almost unintelligible at times. he s.s.b. almost unintelligible at times.
Throughout the tests 3 W of 144 MHz s.s.
into $0 / 8$ whips was used for talkback, and dave to $5 / 8$ whips was used for talkback, and gave ore uniform coverage than the 1296 MH . The Alford slot aerials have also been in use for three years on a 1296 MHz beacon
(GB3IOW) on the Isle of Wight, and it is hoped GB3IOW) on the Isle of Wight, and it is hope al repeaters proposed for the 1296 MHz band. O.N. Gannaway, G3YGF
IS

S LIGHT VELOCITY A CONSTANT?
It would be difficult to imagine a more unscien ific experiment than the one referred to in May
letters by D.A. Bell in support of the theory of relativity. The four clocks were flown round the world by J.C. Hafele and R.E. Keating not
separately but in one batch and not in one flight ut in commercial aircraft from airport to ai port, subject to landing and take-off at eac tage. Hafele and Keating admitted that th ime-keeping qualities of atomic clocks var
with varying physical conditions but claimed with varying physical conditions but claime would uniformly decrease or increases all fou
clocks and that a random distribution for the clocks and that a random distribution for the
time drifts would be expected unless relativity was active. In fact, since all four clocks wer subject to exactly the same changing enviro mental conditions in the same aircraft, on
would except their time drifts to be identical All that the experiment showed is that atomic clocks will drift in changing physical conditions.
If the four clocks had been flown separately ove the four clocks had been flown separately ove imes the experiment may have had some valid y and a very different result would no doub have been obtained.
In the interminat lation it has alwways been claimed that time goe slower for a body in motion relative to the earth
In this case whatever correction may be applie In this case whatever correction may be applie
to the aircraft's ground speed (there is no such thing as a a stationary frame in Einstein's relativ ity) the airborne clocks had a velocity, the direc-
tion of which is immaterial since time-dilation is tion of which is immaterial since time-dilation
a function of v^{2}, reative to the earth. According
to the Special Theory the airborne clocks shoul

have lost on both occasions whereas on one flight they actually gained. As Alice might have said, what a strange sort of Throughhe-thesaid, what a strange sort of Through-the-- Looking-Glass world where a contrary result is held to verify a theory!
 Kirkella, North Humberside

HISTORICAL

EOUIPMENT STOLEN

during the morning of 25th February 1981 nan gained access, by deception, to the foyer of
he New Street, Chelmsford, premises of The Ne New Street, Chelmsford, premises of The
Aarconi Company. He managed to remove a valuable exhibit from the permanent display of vistorical Marconi radio equipment. Challenged y security staff, he succeeded in breaking ou into the street, ,
The stolen item is a 1907 Multiple Tuner (see
photo). It is readily identifiable by the serial hoto). It is readily identifiable by the seria Wireless Telegraph Co Lotd 8015 .

Should any collector be offered this item he the Historian, The Marconi Company Limited, Marconi House, Chelmsford, England (elephone $0245-353221$) would wish to he W. T. T. Prince
Marconi House

Marconi House
Chelmsford, Essex
CB RADIO AND
RC MODELS
Your columnist Pat Hawker is only partly corhave been offered alternative frol modellers have been offered alternative frequencies
(World of Amateur Radio, April issue). It is true that a new frequency (35 MHz) is now available but it is only for the use of model aircraft.
Therefore all other radio modellers with 27 MHz equipment have a continuing problem.
It is probably not widely known that because of increasing a.m. c.b. interference most radio
control equipment is now f.m. The Governcontrol equipment is now f.m. The Govern-
ment's proposals will therefore have the greatest effect on those who have purchased equipment in the last few years. These modellers will
therefore have to convert to 35 MHz if they fly therefore have to convert to 35 MHz if they fly
aircraft (costing $£ 20-30$) or purchase 459 MHz equipment (costing about $£ 200$) if they operate in an area where c.b. interference is obtrusive. As it is unlikely that the illegal a.m. c.b.
operators will change equipment then both model control and the paging systems are likely to become completely unusable
I believe the only honourable course for the
Government to take now would be to provide Government to take now would be to provide
another radio control band for non-aircraft use. This should be as near as possible to the present
band so that equipment can be re-tuned and recrystalled at minimum cost. The c.b. operators
cer should also be asked to pay a licencel fee which would be used to reimbusse modellers for the conversion costs.
T.E. Wakes

Satellite tracking by home computer

Both software and aerial rotator interface for the scientific computer by Neoklis Kyriazis, B.Sc.

This two-part article describes a tracking system for circular orbiting
satellites using the Wireless World scientific computer. Part one, this issue, deals with the interface circuit for controlling the aerial azimuth and elevation angles, and with aerial next section, the Basic/machine-code program will be presented. This program processes the satellite orbit parameters and converts data for use with the interface.

Many home computers are capable of handling the arithmetic necessary for tracking a satellite but they require large
amounts of software to make them beheve amounts of software to make them behave
as a numeric calculator. The Z80/MM57109 combination used in the Wireless World scientific computer enables the complex trigonometry involved in satellite elevation and azimuth angle calculations to be For the program used here, the MkIII BURP interpreter must be installed in the computer.
Although the program was written for tracking the Amsat Oscar series, any satellite on a circular orbit can be tracked by BURP program.
Aerials and rotators
The aerial system used by the author for
tracking Oscars 7 and 8 comprises tracking Oscars 7 and 8 comprises two yagis; one of eight elements for 145.9 MHz
and one of 16 elements for 435.1 MHz . One aerial is mounted at each end of a 1.5 m long tube supported centrally by a The rotator is mounted elevation angle. The rotator is mounted on a metal plate
with a tube welded underneath it which is supported by a second rotator for controlling the azimuth angle.
The Alliance U-200 'Tenna rotor' type aerial rotators used by the author have a four-core control cable; two of these cores
are . for forward/reverse control of the motor, one for the ground connection and one is connected to a cam switch that closes and opens for every 10° rotation of the driven shaft. Semi-air spaced 75 ohm This type of cable is efficient even at u.h.f. but a masthead pre-amp is required for Mode J down-links. Note that in the system described here, aerial elevation is increased by counter-clockwise rotation of
its rotator while the inverse applies for the its rotator while azimuth rotator.

There is a mechanical stop in the rotators used by the author which prevents the
aerials turning through more than 360° This means that if the satellite's azimuth changes from 0° to 360° the rotator must turn through 360° before it can resume tracking. As it takes more than a minute
for the rotator to make one full program is arranged so that it calculates orbits passing north of the ground station and adds 180° to the result while keeping 180° elevation so that the aerials rotate in
the right direction. The same problem the right direction. The same problem
does not apply to the elevation rotator

The interface

Digital information from the computer drives the two aerial rotators via an in-
terface. This interface also terface. This interface also conveys in-
formation relating to the positions of the aerials back to the computer. As mentioned earlier, a cam switch on the shafts of the rotators opens and closes for every switch is connected One contact of he switch is connected internally to
ground and the other is tied externally to +5 V via a 2 k 2 ohm resistor. A $100 \mu \mathrm{~F}$ capacitor and a 220 ohm resistor are used at these connections as a.c. caused by switching high motor currents may affect the operation of the computer.
Each time the cam switch opens, the voltage across one of the two $100 \mu \mathrm{~F}$ capacitors shown in Fig. 1 produces an ' 0 ' level pulse which is fed into the computer via the 0 input port. The of the aerial position and although resolution is only 10°, reception of Amsat Oscar 8 in Mode J using a 16 -element yagi is not affected by the error. If a highly directional aerial is to be used, some more accu-
rate method of feedback may be needed Each rotator motor has two windings at 90° to each other. One end of each winding is connected to ground and a 150 uF nonpolarized capacitor is connected between the other two supply inputs. The capacitor rent supplied to one of the rotor windings. Two relays are used for each rotator; one to switch the 24 V supply from one winding to the other to determine the direction of rotation and one to switch the supply in
and out. The serial output of the computer is used to control the motors via a CD4015 serial-in/parallel-out shift register which drives the relay coils through four buffer transistors.
An accura
An accurate timer is needed to provide
the program with real-time information For this purpose a mains-frequency di-
vider chain consisting of a 7400 and thre 7490 i.cs is used to produce a short pulse every 10 seconds. This pulse activates the maskable interrupt of the Z80 and sends the processor to a routine that increments
the value of the real-time variable, named the value of the real-time variable, named
T in the BURP program, by $1 / 360$ hours, i.e., 10 seconds. Since the INT pin of the Z80 is used by the MM57109 some simple modifications are necessary to give an OR
function between the function between the timer and the
number cruncher, details of which will be number cruncher, details of which will b
given later.

Circuit details
Figure 1 shows the complete circuit diagram of the rotator controller. Transformer T_{1} supplies 24 V a.c. for the rotator motors and 10 V a.c. for the rest of the
circuit. Diode D_{5} and a $2200 \mu \mathrm{~F}$ capacitor provide 12 V d.c. for the relay coils and for the 5 V regulator which supplies the CD4015 c.m.o.s. shift register and the timer section i.cs. Logic signals to and
from the computer are fed through a 6 -way DIN socket and to and from the rotators via two 5 -way DIN sockets. The buffered D7 line from the computer is connected to the data input of the CD4015 at pin 7 while a clock pulse to pins 1 and 9 of the i.c. is
supplied from pin 10 of IC supplied from pin 10 of IC_{2}
is fed to the CD4015 in serial form from output port HEX A0. The parallel outputs Q0 to Q3 drive transistors Tr_{1} to Tr_{4} through 1 k ohm resistors and any spurious pulses created during serial data transfer
are bypassed through 47 nF capacitors. Outputs $\overline{\mathrm{Q}} 0$ to $\overline{\mathrm{Q}} 3$ of the 4015 are not used but are available for controlling additional circuits if required. Transistors Tr_{1} to Tr_{4}
drive the four relay drive the four relay coils from the c.m.o.s.
shift register outputs so they should have high h_{FE}. Darlington pairs can be used if necessary.
Relays RLA $_{1}$ and RLC $_{1}$ switch the direction of the elevation and azimuth motors respectively while $R L B_{1}$ and $R L D_{1}$
switch the 24 V a.c. supply to the motors on or off. Each rotator cam switch output is tied to the +5 V supply through a 2.2 k ohm resistor and a 220 ohm series resistor and $100 \mu \mathrm{~F}$ bypass capacitor in each line prevent a.c. from the motor ground re-
turns passing through to the computer input. When a cam switch is closed a logic ' 1 ' is seen by the computer and when a switch is open a logic ' 0 '. Switch $S 2$, between
ground and the azimuth cam switch input

WIRELESS WORLD AUGUST 1981
WIRELESS WORLD AUGUST 1981 . 45

to the computer, signals the program not to operate the rotator motors when closed. Mains frequency is used as a reference for the ten-second interrupt pulses. Two
gates of a 7400 are used as a Schmitt trigger to give a rectangular wave from the ger to give a rectangular wave from the
transformer secondary voltage. This 50 Hz transformer secondary voltage. This $\mathbf{~ s i g n i d e d ~ b y ~ f i v e ~ b y ~ t h e ~ f i r s t ~} 7490$ and then by ten in both of the following 7490 s to give an output of 0.1 Hz which is differentiated by a $2.2 \mu \mathrm{~F}$ capacitor and 10 k ohm resistor in parallel. The resulting nar-
row pulse is fed through the remaining two gates of the 7400 , also connected as a Schmitt trigger, to the INT input of the Z80. Switch S_{1}, connected to the reset input of the 7490 dividers, is used to start be synchronized with real time.

Computer modifications

As a pulse from the timer can occur while the program is controlling the rotators, he processort mode two) is used so that the processor can be directed to the in-
terrupt service routine anywhere in the
program. When IM2 is specified the processor will look for an eight-bit in he interruptor. Since the RDNWPR by MREQ inetor. Since the RD/WR and MREQ lines are inactive during an in terrupt cycle the bi-directional drivers a
the data pins of the 80 . high-impedance state. Hence, the Z80 is liable to read a random vector unless the Z80 data lines are tied to either logic state. In this design, the data lines are tied to ground through 10 k ohm resistors so that vector, which is half of a 16 -bit interrup vector whose upper half is provided by the program. The 16 -bit pointer thus formed is used as the address of the memory location from which the starting address of the tion pointer. In this program, the interrupt register is loaded with HEX 16 so that the starting address of the interrupt service routine must be in location 1600 . This gins from 1602.
With the MkIII BURP monitor the INT pin of the Z 80 is used by the MM57109 for number transfer so it is necessary to pro-
ide OR function between this pin and the timer. Spare gates on the compute lows. Connect pin 22 of IC C $_{6}$ to pin 13 of IC_{7} instead of to pin 16 of IC_{1} using passive pull-down resistors of 10 k ohm to ground The timer's output is connected to pin 12
of IC ${ }_{7}$ via one pin of a 6 -way DIN socket used to connect the computer with the controller/timer. Pin 11 of IC_{7} then goes to $\operatorname{pin}_{\text {po }} 13$ of IC_{14} and finally, connect pin 12 With these connections the MM57109 and the timer can share the INT pin of the processor. Pins 6 and 10 of IC_{53} are also connected to the DIN socket and through a screened cable to the rotator cam switches. IC $_{53}$ is wired to input port HEX
00 and provides six inputs to the proces. 00 and provides six inputs to the proces-
sor, one of which is used by the cassette interface. The azimuth cam switch goes to bit 2 of the data bus and the elevation cam switch to bit 1 . Bit 0 is used by the cassette interface. Two pins of the DIN socket are used by the buffered D7 line and the clock
pulse, which is active when output port pulse, which is active when output
HEX A0 is used, from pin 10 of IC_{2}. To be continued

Radio and the birth of the universe

The cosmic microwave background in the Big Bang theory

by Eric Eastwood, F.R.S.

The radiation which mediated the processes of nucleosynthesis at the birth of the universe and controlled
the helium/hydrogen radio prevailing ever since is that, cooled by adiabatic expansion, now described as the 3 K cosmic microwave background. This article first reviews the growth of radio astronomy from the 1940 s until
1964 when Arno Penzias and Robert 1964 when Arno Penzias and Rob discovery of this cosmic radiation background. It outlines the measuring programme and the immediate explanation of is deals with the measurements performed to determine the degree of anisotropy in the radio background and describes how the antenna temperature variation led to a velocity of the galaxy. The theory of the "hot big bang" is touched upon and there is a summary of the modern state of the theory which has been able to build upon the essentia measurement of 3 K of the noise background - the ratio of the number of photons to the number of nucleons.
When Karl Jansky set up his aerial and receiver system at Holmdel, New Jersey launch the science of radio astronomy bu simply to assess the interference from atmospherics that might occur with new radio circuits planned to operate in the h.f band $(2-30 \mathrm{MHz})$. From the inception of
wireless telegraphy in 1896 long waves had dominated world radio communications but in the 1920s Marconi showed that cost effective radio systems could be engi neered using the so-called short waves. success of such high frequency radio communication circuits depended upon a good understanding of atmospheric interferenc effects. Such interference was familiar a
long waves and varied with the seasons of long waves and varied with the seasons of the year and time of day; little experience
of interference at short waves had been accumulated, however, and these were the effects which Jansky set out to investigate. His aerial consisted of a wooden frame rotatable about a vertical axis, on which
This article is reprinted from The Marconi Re veres, Vol. XLIII, No. 218, Third
1980, by kind permission of the editor.
was mounted an array of dipoles with re flectors. A horizontal aperic of two wavelengths at the operational frequency rather broad beam radiation pattern but with useful suppression of the back lobe. The magnitude of the received noise signa was recorded together with time and azi muth of arrival. As he expected, Jansky remote thunderstorms but what made his study justly famous was the detection of a weak but steady noise signal which caused a hiss in the phones that could hardly be distinguished from the hiss
caused by set noise". This signal was not isotropic and the directional variation which took place over the first thre months of observation caused him to

conclude that the sun was somehow hvolv. When the observations ha been maintained over a period long enough however, he was able to show that the radiation was coming from a fixed direc tion in space, in fact from the genera direction of the central region of the gal axy, with the maximum signal being re-
ceived from the direction of the constellation Saggitarius ${ }^{2}$.
Jansky speculated upon possible causes of the radiation and considered radiatio from the stars hemselves but hesitated to

Kig. 1. Solar (S) and galactic (G) noise
signals on the p.p.i. of a metric wave radar
15.30 HRS

WIRELESSWORLDAUGUST 1981

48
detect any radiation from the sun (we now
know that this was because the sun was in know that this was because the sun was in
quiet period). He appeared to favour an a quiet period). He appeared to favour an
analogy with the Johnson noise developed by a resistor, pointing out that there was much interstellar matter in the galaxy robably charged, and at a high temperaure and therefore in thermal motion a
with the electrons in a resistor. His propo sal was not wholly incorrect but there the matter rested and this important first discovery of radioastronomy was not fol Jansky's fome years
Jlustrated in Fig. 1 which conveniently pearance of a p.p.i. radar tube displaying the signal from an experimental radar antenna used as a passive receiver which was not unlike the array originally employed by fansky but giving a much sharper beam 96 horizontal dipoles was arranged in 24 vertical stacks and, at the operational fre quency of 215 MHz , yielded a horizonta beam width of 3° The purpose of this
particular set of measurements was to as-
sess the variation in the horizal tion pattern of the array using the radia tion pattern of the array using the sun as a
noise source at infinity. Serendipity played its part in these observations, for in he p.p.i. record of Fig. 1 is shown the diurnal motion of the noise signal from a very active sun (marked with an S) but also G. This second signal showed a sidereal ate of revolution and was found to correspond to the general direction of the galactic centre, thus repeating very vividly Jans ky's original observation - thanks to the
excellent integrating power of the cathode ray tube phosphor ${ }^{4}$.
Growth of radio astronomy That the investigation of the radio emisserved by Jansky was not vigorously pur sued by astronomers was probably attributable to their unfamiliarity with radio and electronic techniques. Radi
taken up the study were fully occupied on he related sun-earth relationships includ ing magnetic phenomena. It has also to be emembered that the decade of the thirties was the period when the principles of rada were being intensively but secretly re searched by all the future participants in
he second world war. These new radio techniques, developed for essentially miliary purposes by scientists and engineers working in close collaboration with the military services, would ultimately mak radio astronomy.
Nevertheless some radio astronomical bservations were made even during the war. Thus Reber in the USA working with 30 -foot parabolic antenna of his own
construction plotted contours of noise missions from the galaxy at a frequency of 160 MHz and so greatly extended Jansky's riginal observations. Serendipity played a part through observations made from
radio noise from the sun during a period of sunspot and flare activity was detected and band of radar frequencies ($20-100 \mathrm{MHz}$). Radars operating in the $20-80 \mathrm{MHz}$ ban deployed by the RAF and the Army fo detecting and tracking V2 missiles in 1944/45 also proved capable of performin the same function on meteors penetrating study of meteor astronomy by radar. Particularly important was the use of the army equipment to map with much greate Milky Way and this work by Hey by the the first recognition of the Cygnus radio source.
With the end of the war radio astronomy was rapidly developed in many laborato ries all over the world. Many types of enhance receiver sensitivity and antenn resolving power. Study of the radio emis sions from stars, galaxies and the univers at large supplied new information whic
complemented the findings of the optical universe and and our understanding of th increased by the fruitful marriage of optical and radio methods. Similar increase in understanding will surely stem from th newer techniques of mounting sensors in satellites and space vehicles so that optical and microwave radioations, x-ray, γ-ray the attenuations produced by the earth's atmosphere. Radio has had the special ad vantage relative to the other radiation long waves which ore better able to pene trate deeply into the "dusty regions" of th galaxy (as evidenced by dark clouds obscuring parts of the Milky Way) Coupled with this advantage has been the ability to detect line radiations from such which has permitted the spiral arms of ou own galaxy to be traced; or carbon monoxide $(\lambda=2.6 \mathrm{~mm})$ which is yielding valuabl information on the presence of a great rin
of cold star-forming clouds in the inne region of the galaxy Analyses by radio astronomers hav been made, not only of our own local gal-
axy but also of the radio profiles of much vaster galaxies than our own. This ha allowed detailed comparisons of these radio contours to be made with the star
fields of these regions as recorded by the fields of these regions as recorded by the
optical astronomers, with the result tha dentification of many radio sources with ptical galaries with known spectral cha acteristics has proved to be possible. Thi work coupled with the results of the re of radio sources over the whole of the elestial sphere have had profound impli cations for cosmology - the study of the volution of the universe itself. With all this post-war activity in obser-
vational radio astronomy, so successful in ts prosecution and so fascinating in it consequences for our understanding of tars and galaxies, it seems astonishing in
etrospect that one discovery so vital for

Theory of the expanding universe

Improvements in telescopes during the
early 18 th century were such that astronomers were able to distinguish clearly and other more extended luminous regions which appeared as small, faint "clouds", hence the name given to them - nebulae.
The philosopher Immanuel Kant writing The philosopher Immanuel Kant writing
in 175 held that many of the nebulae were probably yassemblies of stars like our own
Milky Way (the local galay, from galaxias Milky Way (the local galaxy, from galaxias
milk) and should be regarded as "island universes".
Kant's view did not prevail until 170 years later; meanwhile, nebula plotting was pursued with such good effect by Sir
William Herschel, the musician turned astronomer who discovered the planet Ura-
nus in 1781 and nus in 1781 , and later by his son, Sir John
Herschel, that by 1864 the Catalogue of Herschel, that by 1864 the Catalogue of
Nebulae published by the latter contained Nebulae published by the latter contained
over five thousand entries. Yet the nature and locations of the nebulae remained unthis time considered to be glowing gas this time considered to be glowing gas
clouds lying within the local galaxy. About this time the spectroscope was married to
the telescope, to increase very significantly the telescope, to increase very significantly
the astronomer's powers for obtaining information about the stars. In this way Sir Norman Lockyer in 1868 identified the
element helium from the sun's spectrum, while Sir William Huggins, in the same year, detected the shift of the absorption
lines in certain stellar spectra. He atrilines in certain stellar spectra. He attri-
buted the wavelength displacement to the - Doppler effect so giving the radial velocity of the star with respect to the earth. By the
turn of the century it had been established turn of the century it had been established
that while the more obviously cloud-like that while the more obviously cloud-like
nebulae lying within the Milky Way gave
bright line bright line emission spectra, i.e. they were
indeed glowing gas clouds, other nebulae indeed glowing gas clouds, other nebulae
showed spectra crossed by dark absorption showed spectra crossed by dark absorption
lines similar to those of stars. It was found
by Silpher that the by Slipher that the absorption lines of most
of the nebulae he observed were shifted of the nebulae he observed were shifted
towards the red and corresponded to quite towards the red and corresponded to quite
high radial velocities of recession; this sug-
 -
reat success to measure the distances of
he nearer nebulae, but for fainter and he nearer nebulae, but for fainter and more remote nebulae the Cepheids could Nevertheless, Hubble perservered with his distance measuring programme, basing it
upon luminosity measurements of idenifiable bright stars. By 1929 Hubble was able to combine his distance measurements
with Slipher's spectroscopically deter-
mined radial velocities and showed that the elocity was roughly proportional to the distance. This work contitued until 1936
with distances of still fainter galaxies being with distances of still fainter galaxies being estimated from the luminosity of the galight years) and with velocities provided by
he spectroscopist Milton Humason. Nevertheless, the linear relation between velocity and distance was maintained, i.e. velocity equals constant times the radial
distance, with the constant becoming apdistance, with the constant becoming ap-
propriately known as Hubble's Constant H. Apart from a few nearer galaxies,
Heluding the Andromeda spiral ncluding the Andromeda spiral, all the velocities measured werc velocities of re-
cession, i.e. the spectrum lines were cession, i.e. the spectran
shifted towards the red.
When newer telescope
When newer telescopes became avail-
ble after the war, such as the Palomar able after the war, such as the Palomar
200-inch, the measurements were contin-
ued but the broad features of Hubble's
................

Optically magnifying a graticule as if from an object (left) Vo an image (right), illustrates process of expansion.
Velocity of separation of a particular pair of points on th
vork remained. More detailed study of the Cepheid variables, in particular the hanged the distance scale so that the An$2,200,000$ light years. In consequence the distance scale for the galaxies has been creased and the accepted value of the Hubble constant at present is 15 kilo-
metres per second per million light years. Hubble's law refers to distances and veHocites measured relative to the earth and re very privileged observers of the unierse. It was quickly realised, however, hat this was not so; all the galaxies are ushing apart from each other and Hub
ble's relation would be observed by an observer on any other galaxy who could qually well regard himself as the centre of Since the relative velocity between any
Sinpansion
pair of galaxies is proportional to their pair of galaxies is proportional to their
separation, i.e. $v=H d$, then the time separation, i.e. $v=H d$, then the time
taken to achieve this separation is someaken to achieve this separation is some
value not greater than $d / v=1 / H$. In other
words. the expansion of the galaxies in words, the expansion of the galaxies in
accordance with Hubble's Law implies ccordance with Hubble's Law implies
that at a time in the order of $1 / H$ in the past
all the galaxies must have been in close roximity to each other. With H equal to $15 \mathrm{~km} \mathrm{sec}^{-1}$ per 10^{6} light years $11 / H$ be-
comes 20,000 million years, but since the comes 20,000 million years, but since the ity during the expansion, the time taken must hare.
figure.
The
figure.
The expansion process can be simply
visualised by considering as shown in the visualised by considering, as shown in the
diagram, a graticule imaged on to a televion screen through a device piving sion screen through a device giving
controllable magnification of the picture
(as by (as by a zoom lens in television, or when a radar plan position display is expanded
about $a n y$ chosen centre). As the magnifiabout $a n y$ chosen centre). As the magnifi-
cation is continuously increased, so the image points expand wavy fromed eacho other
and, obviously, the velocity of separation and, obviously, the velocity of separation
of a particular pair of points AB is propor-
tional to the separation as Hubble's Law of a particular pair of points AB is propor-
tional to the separation as Hubleles LLaw
states. An observer located at any image
would be observed at B , and the "univers of points" would appear isotropic and ho
mogeneous. The Cosmological Principl states that all observers in the universe ar them to be homogeneous and isotropic and to display similar motions
The investigations of Hubble and his co workers took place against a backgrou
of cosmological theory which include Einstein's General Theory of Relativity of 1916. This is still the best guide we have to the understanding of the interrelation
space, time and gravitation regarded as the essential elements of the universe whic we observe. At first, solutions of Einstein equations were sought which would de
cribe a uniform and isotropic universe th was neither expanding nor contracting but with the acceptance of Hubble'
findings on the expanding universe cosm logists in their studies of the universe have relied mainly on Friedmann's solutions of 1922 which retained only the constraints of isotropy and homogeneity. These solution
lead to the concept of the universe bein closed, i.e. oscillatory, with collapse fol lowing the present expansion, or open, i. . all galaxies expanding to infinity, accord-
ing as the average density of the presen ing as the average density of the presen
universe is greater or less than a certai critical value. This value is proportional to
the square of the Hubbe constant; if $H=$ the square of the Hubble constant; if H
$15 \mathrm{~km} \sec ^{-1 / 1} / 10^{6}$ light years then the $15 \mathrm{~km} \mathrm{sec}^{-1} 11^{6}{ }^{6}$ light years then the
critical density is $5 \times 10^{-30} \mathrm{gm} \mathrm{cm}^{-3}$
which corresponds to which corresponds to about three hydro
gen atoms per thousand litres of space. gen atoms per thousand litres of space
Estimates of the present density fro known gaaxies is about $11^{-30} \mathrm{gm}_{\mathrm{m}} \mathrm{cm}^{-3}$
which would mean that the universe is which would mean that the universe is
open; this has prompted many astroopen; this has prompted many astro-
nomers to search for methods of detectin nomers to search for methods of detecting
the "missing matter" that might "close" the universe.
It has to be emphasised that the explo-
sion which launched the expansion is no sion which launched the expansion is no
to be thought of as merely projecting mat to be thought of as merely projecting mat-
ter into an otherwise empty space waiting
to receive it: General relatity to receive it. General relativity suggests
that the process must be viewed as an
expansion of space itself expansion of space itself, with matter and
radiation being carried outward as it were
like the co-ordinate points of the diagram. Thus every galaxy possesses a cosmological velocity relative to the co-ordinate system
which is described as a "pecular" velocity. which is described as a "pecular" velocity.
It was the peculiar velocity of our local It was the peculiar velocity of our local
galaxy which Muller's experiment detected and measured.
According to this view of the expanding
universe of the galaxies the red shifts obuniverse of the galaxies the red shifts ob-
served by Slipher and Humason may also be regarded as a consequence of the expanding space which is the co-ordinate
system. In the simple case with the relative velocity of two galaxies such less than the velocity of light c and having separation d, then for radiation of wavelength λ the
Doppler effect will produce a fractional increase in wavelength or red shift of $z=$ $\delta \lambda \lambda=v / c$. But the transit time of the signal s $d c$ and during this time the increase in separation of the galaxies $(d s / c) v$ so that
the fractional increase in distance is $(d / c) v$ $(1 / d)=v / c=z$. In other words, the fractional increase in wavelength is equal to the
fractional increase in distance between the transmitting and receiving galaxies; it is for this reason that such a Doppler shift is
described as a "cosmological red shift". described as a "cosmological red shif"".
For large velocities, i.e. high values of the
red shift z then secial relativity gives $1+$ red dhift z, then special relativity gives $1+$
$=((c+v) /(c-v))^{\prime 2}$ but the proportional-$z=((c+v))(c-v))^{\prime 2}$ but the proportional-
ity between wavelength and the expansion
factor of the universe remains true ${ }^{8}$, and also applies in the general relativity case. The theory of the expanding universe
outlined above is not accepted by and nomers and so it is reassuring to find evidence from other branches of science which, at least, are not grossly at variance
with the age of the universe derived as the with the age of the universe derived as the
reciprocal of Hubble's constant. Thus georeciprocal of tubbe's constant. Thus geo-
logical studies indicate a lower limit of four thousand million years for the age of the
earth. Evidence on the age of the galayy earth. Evidence on the age of the galaxy
deduced from stellar studies suggests a deduced from stellar studies suggests a
figure well in excess of ten thousand mil-
lion years lion years. So $1 / H$ is not a hopeless figure
for the age of the universe, remembering for the age of the universe, remembering
that H itself has not been determined accurately by reason of the difficulty of measuring the distances of all but the nearer
galaxies.
r 1
 ,
有

 .
progress in cosmology should have had to wait until 1965 to be made - the existence of an all pervading radio noise backof a low temperature black body radiator. Serendipity and radio communications reearch has helped to correct the omission.

Microwave radio noise

background
ust as Jansky in 1931 was looking for sources and magnitudes of noise that might prejudice the performance of a h.f. radio communication circuit, so in 1964
two later Bell Laboratory scientists (working at the same Holmdel Field Station), Arno Penzias and Robert Wilson, were engaged on a not dissimilar tas Their operational interest related to satellite communication systems but the imment of interfering noise emissions from he galaxy at microwave frequencies, and also propagation effects in the atmosphere. In order to measure the received noise was employed whereby the receiver was switched between the incoming sky signal nd the noise signal delivered by a resistiv oad cooled in liquid helium. In this wa noise effects in the receiving system were
eliminated but it was recognised that errors might still be introduced by noise gnals generated in the antenna structure itself. In their experiment Penzias and Wilson employed a cornucopia type of anBell scientists to study the recention ignals passively reflected from the Echo I satellite (a 100 ft diameter balloon made of netalized fabric which was ejected from anister after launch into orbit and inflated ia was a shielded parabolic antenna which had a very low level backlobe; it was vir ually immune from microwave radiation from the earth's surface since all the obserdirected to the zenith. It seemed most unkely that such a well engineered structure would produce any interfering noise but to confirm that such an effect was totally sent they made 735 first observations a wavelength of 7.35 cm (the Telstar bea on frequency) when it was assumed that
oo noise power would be received from the galaxy. The magnitude of the inevitable terfering emissions from the atmos phere, mainly due to oxygen and wate olecules, could be allowed for by taking tion.
In spite of these precautions to eliminate all possible sources of error it was found hat the noise power received was at a
higher level than expected and correonded to an excess antenna temperature f some $3.5 \pm 1.0 \mathrm{~K}$. The antenna tempeature when directed to the zenith was 6 . K , of which 2.3 K was attributable to the atmosphere and 0.9 K due to back lobe variation of the signal could be detected This was in sharp contrast to Jansky's original discovery of the radiation from the
galaxy and eliminated the galaxy as surce of the isotropic signal. It appeare bathed in the radio flux and he concluid seemed to be inevitable that the whole universe must be filled with this radiation. What was its spectrum? Could it be black body radiation and, if so, what was its riginally derived ${ }^{5}$?
A possible answer to the last question was soon forthcoming and revealed the cosmic importance (literally) of the discovThey learnt through contact with the astronomy group at Princeton University headed by Robert Dicke and which included Peebles, Roll and Wilkinson, that very recent theoretical research pursued by might have existed in the early "fireball" phase of the nascent universe (Dicke speculated that it might be the condensed state of a contracted previous universe) perature field of radiation must then have een present. This field, being in thermal equilibrium with the matter, would have possessed a black body spectrum. Such a radiation field would have prevented the too rapid nucleosynthesis of helium and protons and neutrons, for it is known from astronomical observations that hydrogen still forms about three quarters of the matter of the universe. It was suggested that of the universe would preserve its black body spectral characteristics as the universe expanded but its temperature would fall progressively and inversely proportionto the "size of the universe as radiation, or "photon gas" as it may be
regarded, cooled adiabatically". If this were the radiation which Penzias and Wilson had detected it meant that the birth of the universe was being "seen" by radio waves as ancient as the universe itself.
Dicke and his colleagues had estimated that the present temperature of such a space expanded radiation field would be in the order of 10 K and concluded that it would be worth while to look for the radia-

Fig. 2. The black body spectrum for 3 K. The units of Una
wavelength.
ion. Accordingly two members of the group, Roll and Wilkinson, proceeded to
build a radiometer designed to detect the build a radiometer designed to detect the
radiation on a wavelength of 3.2 cm . At this point the Princeton group learnt of the Holmdel measurements on 7.35 cm and the need was at once apparent for observations oo be made at other wavelengths in order to of the background radiation conformed to a black body spectrum. Roll and Wilkinson's observations were immediately pressed to a conclusion and yielded a noise a black body spectrum of approximately 3 . K . In other words the measurements of Penzias and Wilson, and Roll and Wilkinson fitted the black body curve shown in
Fig. 2 which is described by the Fig. 2 which is described by the Planck formula:

$$
\begin{aligned}
& \mu=\frac{8 x^{2} h^{3}}{d}\left(0 \frac{8}{x=1}-1\right)^{-1} \\
& \text { or } m=\frac{8 \pi c}{x^{x}}\left(0 \frac{k}{m^{2}}-1\right)
\end{aligned}
$$

where: u, is the energy per unit volume per is wavelength at wavelength λ h is Planck's constant $\left(6.625 \times 10^{-34} \mathrm{~J}\right.$)
k is Boltzmann's constant $\left(1.38 \times 10^{-23}\right.$
$\left.\mathrm{JK}{ }^{-1}\right)$ ${ }_{T} \mathrm{JK}^{-1}$). T is the absolute temperature (K)
C is the velocity of light $\left(2.99729 \times 10^{8}\right.$ ms^{-1})
Thus the experimental evidence for the xistence of a 3 K cosmic microwave radiation background (as it has come to be
called) was already very good in 1965. As observations by later workers have accumulated the black body characteristic of the radio background has been given a probability bordering on certainty. For their discovery of the microwave backperature Penzias and Wilson were awarded the Nobel Prize in physics in 1978.

Anisotropy of microwave background
In the letter to the Astrophysical Journal ${ }^{5}$ In the letter to the Astrophysical Journal excess antenna temperature, Penzias and Wilson stated, "This excess temperature is, within the limits of our observations, isotropic, unpolarized and free from
seasonal variations". This question of isoseasonal variations. This question of iso-
tropy was examined by a number of workers at the same time as the back body nature of the radiation was being established. By 1973 refinement of ground based experiments had permitted any anis-
tropy that might exist to be shown to be less than one part in five hundred, which corresponds to a few millidegrees in the antenna temperature. In order to refine this measurement still further it was neces-
sary to eliminate or reduce the main source of interference - which was Jansky type noise from the galaxy, but at microwave frequencies. Radio astromoners have
hown that such radiation is indeed pro electrons, not in the simple thermal agita ion mode that Jansky speculated, but by piralling about the lines of force of the alactic magnetic field - the so-calle

he wavelength so that by observing shorter wavelengths this galactic noise in terference would be reduced and, at the same time, the desired signal from the Cosmic background would be increased er and his colleagues at the University of California ${ }^{7}$ when planning an experiment sensitive enough to measure the isotropy at
the one millidegree level. They decided to he one millidegree level. They decided to operate at a wavelength of 9 millimetres
and to avoid radiation from molecules of water in the atmosphere they designed the equipment to be operated in an aircraft flying at $50,000 \mathrm{ft}$. Compensation for th aerial temperature component arising from the oxygen radiation was achieved by orns looking at different parts of the sky but at the same angles of elevation so tha milar volumes of oxygen were included in their respective beams.
This is the principle of the Dicke radio astronomy. A switching frequency about one hundred hertz was employed and by filtering and amplifying the outpu from the receiver at this frequency any temperature difference between the two
sky regions could be detected. Microwave signals from the sun and thermal effects on he antennae were avoided by making th ights at night. When sky temperatur observations are conducted from th round the portion of the celestial spher beam of the antenna due to the diurna rotation of the earth; the same is substantially true when the equipment is carried in an aircraft.
In order to study seasonal effects the flight programme extended over the whole anisotropy was indeed present. It wa found that the temperature of the sky varied smoothly according to a cosine law from a maximum in the direction of reciprocal direction i.e. towards the constellation Aquarius. Temperature differences between these two directions and lide average sky temperature was ± 3.5 mil the velocity of the receiving antenna with respect to the radiation field and the Doppler shift that this produces. Apart from the cosine variation the radiatio 3000 but was isotropic to one part in where the antenna velocity is directly opposed to that of the radiation its spectrum will be displaced towards the blue i.e. its black body characteristics will be mainthe mean wavelength λ will be shifted by an amount $\delta \lambda$ given by the usual Dopple relation $\delta \lambda \lambda=v / c$, where v is the resultan velocity of the antenna. But according to

Fig. 3. The anisotropy of the cosmic

 velocity of the galaxy.Wien's law the typical wavelength is inversely proportional to the radiation tempera ture T i.e. $\delta \lambda / \lambda=-\delta T / T$ and the velocity v
is given by $(\delta T / T) c$, with $\delta T=3.5 \times 10^{-3}$ is given by $(\delta T / T) c$, with δT
K the v is about $390 \mathrm{~km} / \mathrm{sec}$.
There are three vector components to this velocity:
(1) The orbital velocity of the earth about the sun at $30 \mathrm{~km} / \mathrm{sec}$.
(2) the orbital velocity of the solar system $\mathrm{km} / \mathrm{sec}$. (3) th
ith relocity of the galaxy as a whol iscespect to the radiation field, or, a discussed later, with respect to those reIons of the early universe from which the
last scattering of the radiation occurred By appropriate combination of the ve locity vectors Muller and his colleague concluded that the velocity of the galax with respect to the radiation field is abou $00 \mathrm{~km} / \mathrm{sec}$.

Cosmic role of radiation When Lord Kelvin made his calculation of the age of the earth, based upon the cooling of a sphere from an inital high temperature, he recognized that his estimate was much too low to satisfy the geologists and so he included in his paper a
caveat to the effect that there might be within the earth some undiscovered source of heat that would lengthen the time scale We now know that certain nuclei dispersed in the rocks provide one such source.
Again, the Kelvin-Helmholz contrac theory of the sun as a means of supplyin the energy it pours out as radiation proved quite inadequate to explain the age of the sun. But increased understanding of suggestions that the fusion of hydrogen to suggestion could easily supply the required energy and also provide a lead to the synthesis of the heavier nuclei which spectroscopy had shown to be present in the
sun and other stars win and other stars.
With geophysics and astrophysics al-
ready deriving support from applied nuclear physics, it was not surprising that cosmology should also be penetrated by the new physics. We have seen that there are good reasons for assuming that the
myriad of galaxies which we now see widely distributed through space wer probably in close proximity to each other
, go. Certainly they thousand million year ago. Certainly they did not then exist a
galaxies for the universe must have been in highly contracted and compressed stat In 1948 Alpher, Bethe and Gamow ${ }^{9}$ pu forward the first version of the so-called "hot big bang theory" which postulate ust such a very dense state of the earl universe in which the temperature was so
high that thermonuclear reactions could ake place in the primeval, wholly neutro "gas". Decay of neutrons to protons wa ssumed, followed by interactions to yiel helium and other heavier elements, wit the energy released fuelling the explosio was recognized that radiation would b produced and it was even suggested tha the cooled residue of this radiation should still be present in the universe. Curiousl
enough this paper did not prompt a search for the radiation, neither did it influence the discovery of the cos background by Penzias and Wilson•in 1964.

The existence of the 3 K microwave background is the major evidence in
support of the modern Big Bang theory support of the modern Big bang theory
while the isotropy of the radiation argues strongly in support of the Cosmological Principle. The black body character of the spectrum indicates that at the time of it
origin the radiation was in thermal equiliorigin the radiation was in thermal equil
brium with matter. That point in the past can be identified as the time when th expanding fireball which was the univers was a thousandth of the size of the presen universe and, correspondingly, was at
temperature of about 3000 K , for that was the stage when the protons and the helium nuclei formed by thermonuclear processe could combine with the free electrons. Be fore that time (and at higher temperatures) the density of electrons, protons, etc., had
been so high that scattering processes en been so high that scattering processes en
sured that the universe was opaque t sured that the universe was opaque to
radiation. With the formation of atoms and the removal of the electron scatterers space became transparent to radiation; this wa the so-called moment of decoupling, afte
which the adiabatic expansion of the radia tion to its present state commenced, the black body character of the spectrum be ing maintained. Thus the radiation whic is now received carries the imprint of thos regions of the new universe where the last
scattering occurred but, as already noted Muller's work did not reveal any inhomogeneities in these regions that might hav suggested that groupings of matter had occurred at that stage. Perhaps this conclu-
sion was to be expected, for only after decoupling of electrons and radiation was the great pressure of the radiation released which hitherto had prevented any associa tion of the matter into aggregations, so that the formation of the galaxies which we now see could then begin.
Most important of the contributions to cosmology which stem from knowledge of cosmic microwave background and it temperature of about 3 K is the fact that it number of photons to the rumber nuclear particles in the present universe This ratio would have been maintained

[^0] (x)
during the fireball era and knowledge of it is necessary to study the progress of th nuclear reactions which then occurred, tion of deuterium as the essential in termediary to the formation of the helium nuclei. Because the present temperature of the radiation background is 3 K , the Planck formula tells us that the wavelength the photons, which are the quanta of the energy carried by such a radiation stream, are spatially distributed at roughly a wavelength interval, so that the number of photons per litre is ine order of a miliion 550,000 . Estimates of the number of nuclear particles in the galaxies then permits the ratio of photons to nuclear particles to be put at between 100 million
to 20,000 million, i.e. a ratio in the order of 1000 million. It is this dominance of the radiation which controls the reactions at the onset of nucleosynthesis. Calculations of the products of the various nuclear processes are obviously very complex
and were first executed by Peebles, and independently by Wagoner, Fowler and Hoyle ${ }^{10}$. The main conclusion was that helium would be the major product and would represent 22% to 28% by weight with hydrogen comprising most of the re-
mainder, the balance being made up of small amounts of deuterium and other light nuclei. Observational evidence on the abundance of various nuclei in our galaxy indicates that 8% of the atoms are helium, hydrogen; thus the percentage by weight of helium is about 26 .
One of the astonishing features of the theory is the very short time required to complete the nuclear processes that
prepared the essential material from which the present universe has evolved. Perhaps even the slight knowledge that most scien-
tific people now have of nuclear weapons tific people now have of nuclear weapons
should have prepared us for the rapid execution of the succession of reactions that the cosmological theory requires. If the initial ingredients of the early universe be taken as a mix of protons and neutrons at a temperature well above $10^{10} \mathrm{~K}$, together
with radiation of density of about 10^{9} photons per nuclear particle, then there will be an accompanying flux of electrons, positrons, neutrinos and antineutrinos, since the temperature is well above the threshold
temperature for the generation of electron + positron pairs from two "colliding" photons of the radiation $\left(5.9 \times 10^{9} \mathrm{~K}\right)$. The density of the universe at this early stage was enormous and so the frequency of the
various particles would be very great and various particles would be very great and
would ensure that the whole world system was in thermal equilibrium. The principles of statistical mechanics may therefore be applied to the assembly of particles and the
densities of the various species calculated. densities of the various species calculated.
In particular, the number of protons and neutrons must have been equal since the two reactions:
$p+$ antineutrino $\rightleftarrows n+e^{+}$
$n+$ neutrino $\rightleftarrows p+e^{-}$

3 K supplies the present photon density while the ratio of photons/nuclear particle at nucleosynthesis is a factor which in-
fluences the production of the residual fluences the production of the residual
deuterium that escaped conversion to helium. If the abundance of deuterium relative to that of protons which obtained at the end of nucleosynthesis could now be
measured then the present average density measured then the present average density
of particles could be derived more accurately than by the crude method of summing up the possible contents of all the galaxies! Deuterium estimates made so far tend to favour the open universe, but deuterium are still too great for the open universe concept to be accepted as proven.

Conclusion

The modern version of the Big Bang cosmology has already achieved some notable successes, not least being the way it ha the cosmic microwave background. Steven Weinberg, awarded a Nobel Prize in 1979 for his work in particle physics, discusses in his exciting book "The First Three may have preceded the $10^{10} \mathrm{~K}$ stage which was taken as the starting point of this sur vey and shows how many fundamental problems in particle physics are involved in the endeavar in time wack still furthe in time. What is certain is that the present
theory of the foundation of the universe provides a great stimulus for further research and establishes the need for more observations, many of which will have to be made from space vehicles. Thus the nications will continue to be needed in order to make new data available to the cosmologists.

> Reference
> 1. Karl G. Jansky. "Directional Studies of At mospherics at High Frequencies", Proc. Inst.
Rad. Eng., $20,1920,1932$. 2. Karl G. Jansky. "Electrical Disturbance Apparently of Extraterrestial Origin", Proc.
Inst. Rad.Eng., $21,1387,1933$. 3. Karl G. Jansky. "A note on the Source of Interstellar Interf
> Eng., 23, 1158, 1935 .
4. E. Eastwood. "
> Radar", Marconi Reviewe New Applications of 5. A. A. Penzias, and R. W. Wilson. "A Mea surement of Excess Antenna Temperature a 4080 Mc/s", Astrophys. I., 142, 419, 1965 6. R. H. Dicke, P. J. J. . Peebles, , P. G. Roll and
D. T. Wilkinson. "Cosmic Black Body Radia D. T. Wilkinson. "Cosmic Black
tion", Astrophys.. ., 142, 414,1965 tion", Astrophys. 7 ., " $142,414,1965$
7. R. A. Muller. "The Cosmic Background Radiation and the New Aether Drift". Scientific American, 238, May 1978.
> 8. D. W. Sciama. "Modern Cosmology", Cam bridge University Press, Cambridge 1971 . R. A. Alpher, H. A. Bethe and G. Gamow.
"The Origin of Chemical Elements", Phys. "The Origin of Chemical Elements", Phys
Rev., $73,803,1948$. Rev., $73,803,1948$.
10. . V. Wagoner, W. Fowler and F. Hoyle.
"The Sy. "The Synnthesis or Elements at Very High Tem-
peratures", Astrophys. f , $148,21,1967$. peratures", Astrophys. 7 ., I I $148,21,1967$.
11. S. Weinberg. "The First Three Minutes", 11. S. Weinberg. "The First Three Mi
André Deutsch Limited, London, 1978 .

Digital storage and analysis of speech

2 - Coding in the time domain

There are several methods of coding the time waveform of a speech signal to reduce the data rate for a given signal-to-noise ratio, or alternatively to reduce the signal-to-noise ratio for a given data rate. They almost all require more processing, both at the (for regeneration) ends of the digitization process. The aim of this section is to introduce the ideas in a qualitative way: theoretical results of listening tests can be found elsewhere.
Syllabic companding
We have already studied one time-domain encoding technique, namely logarithmic quantization, or \log p.c.m. (sometimes
called "instantaneous companding"). A more sophisticated encoder could track slowly varying trends in the overall amplitude of the speech signal and use this in formation to adjust the quantization levels dynamically. Speech coding methods pulse code modulation systems (a.p.c.m.) Because the overall amplitude changes slowly, it is sufficient to adjust the quantization relatively infrequently (compared with the sampling rate), and this is often
done at rates approximating the syllable rate of running speech, leading to the term "syllabic companding". A block floatingpoint format can be used, with a common exponent being stored every M samples 8 kHz sampling), but the mantissa being stored at the regular sample rate. The overall energy in the block

$$
{ }_{\Sigma}^{h+M-1} \quad x(n)^{2}
$$

Adaptive quantization exploits informaand, as a rough generalization, yields a reduction of one bit per sample in the data rate for telephone-quality speech over or given signal-to-noise ratio. Alternatively for the same data rate an improvement of 6 dB in signal-to-noise ratio can be ob tained. However, there is other information in the time waveform of speech,
namely, the sample-to-sample correlation, which can be exploited to give further reductions.
Differential coding Differential pulse code modulation (d.p.c.m.), in its simplest form, uses the present speech sample as a prediction of error - that is, the sample-to-sample difference. This is a simple case of predictive encoding. Referring back to the speech waveform displayed in Fig. 5, it seems by transmitting the difference between successive samples instead of their abso lute values: less bits are required for the

Fig. 9. Conversion hardware for delta mod-

$$
\sum_{n=h} x
$$

is used to determine a suita
difference signal for a given overall accur-
acy because it does not assume such extreme values as the absolute signal level. Actually, the improvement is not all tha great - about $4-5 \mathrm{~dB}$ in signal-to-nois
ratio, or just under one bit per sample for given signal-to-noise ratio - for the difference signal can be nearly as large as th absolute signal level.
If d.p.c.m. is used in conjunction with adaptive quantization, giving one form of
adaptive differential pulse code modula tion (a.d.p.c.m.), both the overall ampli tude variation and the sample-to-sample correlation are exploited, leading to a com bined gain of $10-11 \mathrm{~dB}$ in signal-to-noise ratio (or just under two bits reduction per
sample for telephone-quality speech). sample for telephone-quality speech).
Another form of adaptation is to alter the predictor by multiplying the previous sample by a parameter which is adjusted for best performance. Then the
$e(n)=x(n)-a x(n-1)$,
where the parameter a is adapted (and stored) on a syllabic time-scale. This lead ratio, which can be combined with that achieved by adaptive quantization. Much more substantial benefits can be realized by using a weighted sum of the past severa and every sample in the buitable exponent, $x(h), x(h+1), \ldots x(h+M-1)-$ is scaled speech transmission systems this method necessitates a delay of M samples at the encoder, and indeed some methods base the exponent on the energy in the last however, the delay is irrelevant. A rather however, the delay ifferent, nonsylabic, method of adaptive p.c.m. is continually to change the step size of a uniform quantizer, by mulitplying it by a constant at each sample which is of the previous code word.

(up to 15) speech samples, and adapting all the weights. However, this requires a great
deal more computational power - both in the encoder and in the decoder.

Delta modulation

The coding methods presented so far all increase the complexity of the analogue-todigital interface (or, if the sampled waveform is coded digitally, they increase the processing required before and after sto-
rage). One method which considerably simplifies the interface is the limiting case of d.p.c.m. with just 1-bit quantization, in which only the sign of the difference beween the current and last values is
transmitted. Figure 9 shows the conversion hardware. The encoding part is essentially the same as a tracking d -to-a, where the value in a counter is forced to track the analogue input by incrementing or decreexceeds or falls short of the anal he input exceeds or falls short of the analogue equi-
valent of the counter's contents. However, for this encoding scheme, called "delta modulation", the increment/decrement signal itself forms the discrete representaion of the waveform, instead of the counbe constituted from the bit stream with another counter and d-to-a converter. However, an all-analogue implementation an be used, both for the encoder and whose charging current is controlled digially. This is a much cheaper realization. It is fairly obvious that the sampling requency for deita modulation will need to be considerably higher than for
straightforward p.c.m. Figure 10 shows an effect called "slope overload" which occurs when the sampling rate is too low. Either a higher sample rate or a larger step size will reduce the overload; however, larger steps increase the noise level of the
alternate 1 s and -1 s that occur when no nput is present - called "granular noise". A compromise is necessary between slope overload and granular noise for a given bit rate. Delta modulation results in lower for a given signal-to-noise ratio if that ratio is low (poor-quality speech). As the desired speech quality is increased, its data rate grows faster than that of logarithmic p.c.m. The crossover point occurs at a elephone quality speech, and so althoug delta modulation is used for some applicacons where the permissible data rate is severely constrained, it is not really suit It is profitable to adjust the step size leading to adaptive delta modulation. A common strategy is to increase or decrease he step size by a multiplicative constant, hich depends on whether the new from the last one. That is,
epsize $(n+1)=$ ste
$(n+1)<x(n)<x(n-1)$ or or $\begin{array}{lll}x(n+1)<x(n)<x(n-1) \\ x(n+1)>x(n)>x(n-1) & \text { (slope overload } \\ \text { condita })\end{array}$ condition);
stepsize $(n+1)$
$x(n-1)<x(n)$ or $x(n+1), 2$ if $x(n+1)$, (granular noise condition).

Fig. 10. Slope overload and granular noise in delta modulation.

Despite these adaptive equations, the step size should be constrained to lie beween a predetermined fixed maximum ing so large or so small that rapid accommodation to changing input signals is impossible. Then, in a period of potential lope overload the step size will grow, preventing overload, possibly to its maxiquiet period it will decrease to. its minimum value which determines the granular noise in the idle condition. Note hat the step size need not be stored, for it can be deduced from the bit changes in the
digitized data. Although adaptation imdigitized data. Although adaptation im-
proves the performance of delta modulation, it is still inferior to p.c.m. at telephone qualities.
It seems that a.d.p.c.m., with adaptive quantization and adaptive prediction, can provide a worthwhile advantage for speech storage, reducing the number of bits needed per sample of telephone-quality speech from 7 for logarithmic p.c.m. to perhaps 5 , and the data rate from 56
kbits/s to $40 \mathrm{kbits} / \mathrm{s}$. Disadvantages are additional complexity in the encoding and decoding processes, and the fact that byteoriented storage, with 8 bits/sample in logarithmic p.c.m., is more convenient for
computer use. For low quality computer use. For low quality speech,
where hardware complexity is to be minimized, adaptive delta modulation could prove worthwhile - although the ready availability of p.c.m. codec chips duces the cost adrat.
To be continued.

Literature received

Monthly news sheets, which contain details of a instruments, are sent out free of chore by intruments, (Electrical) Ltd, 34/6 America Lane, Haywards Heath, West Sussex RH16 30 U.
WW401

Instruments and accessories for measuremen and test, and a number of instrument cases, are
illustrated and specified in a catalogue f illustrated and specified in a catalogue from
Global Specialities Corporation, Shire Hill Industrial Estate, Units 1 and 2, Saffron Walden

A large range of active and passive components A large range of active and passive components
for thick-film hybrid circuits is fully detailed in
a new cataloge from a new catalogue from Norsem Thick Film Com-
ponents, Level l, The Civic Centre $\begin{aligned} & \text { ponents, Level } 1 \text {, The Civic Centre, Hartlepool, } \\ & \text { Cleveland. } \\ & \text { WW } 403\end{aligned}$

Programmable sound

 generator interfacecontinued from page 38

The interface decoding logic, shown in Fig. 1, uses A0-A7, IORQ and WR signals from the $Z 80$ and four i.cs to provide BC1
and BDIR signals for two p.s.gs. The two separately addressable p.s.gs require four $Z 80 \mathrm{i} / \mathrm{o}$ ports, $252-255$, which can be relocated by using one or more of the three spare gates to invert the address lines be-
fore IC fore IC_{1}.
The p.s.gs are programmed by latching their relevant register and then writing or the following instruction
LD A,R $\quad \begin{gathered}R \\ \text { address, }, R=0-15\end{gathered}$ the p.s.g. register OUT (252), A latch register address R in LD A, D ${ }_{\mathrm{D}}^{\mathrm{D}}$ is the output data, $D=0-255$ OUT (253), A output data to latched reNA, (253) gister in p.s.g. 1 IN A, (253) $\begin{aligned} & \text { return contents of latched } \\ & \text { register in p.s.g. } 1 \text { to } \mathrm{A} .\end{aligned}$ Alternatively, the corresponding Basic commands can be used. The second p.s.g. is programmed in the same way using i/o addresses latched on port 254
The 8 -input NAND gate enables a dual 2 -line to 4 -line decoder when IORQ is active during i/o cycles involving ports 252-255. $\mathrm{IC}_{3 a}$ decodes A0 and WR, and
simulates BC1 and BDIR on data outputs 2 and 3 for all necessary p.s.g. bus functions except the inactive state. $\mathrm{IC}_{3 \mathrm{~b}}, \mathrm{IC}_{4}$ and two inverters ensure that each p.s.g. bus is only active during the i/o operations isted above. Therefore, a p.s.g. bus can
only be active when IORQ is active, which is sufficient to fulfil the timing requirements of the p.s.g. and a 4 MHz Z 80 system.
The construction of the interface is for driving one or two AY-3-8910 device is shown in Fig. 2. The interface will also drive the smaller AY-3-8912 i.c., but the pin assignment is different and there is no A9 address line. Because the p.s.g. has a maximum clock frequency of 2 MHz , an 4 MHz clock by 2 or 4 .
Although the three audio outputs in Fig. 2 are connected together, they may be mpified separately with an i.c. such The interface can be modified to contro four p.s.gs by decoding both A1 and A2 with $\mathrm{IC}_{3 \mathrm{~b}}$. In this case, disconnect A 2 from IC_{1} and connect the NAND gate input to
 The inverted data outputs from $\mathrm{IC}_{3 \mathrm{~b}}$, pins
9 and 10, then gate another 74 LS 08 to generate the BC1 and BDIR signals for two extra p.s.gs. Four devices are controlled via eight i/o ports, 248-255,
which provides twelve inde programmable audio channels.

Improving the 74S262

character generato

A disadvantage of the 74S262 character generator r.o.m. is that the displayed outputs for zero and upper-case O are iden-
tical. This circuit simulates the style of zero found in other r.o.ms.
converted to letter A, 1000001, and the dot-row address is modified so that the lower half of the displayed character is a reflection of the upper half. Because only the address inputs to the r.o.m. are mod-
ified, other functions such as character ounding are not affected. The switch can be included to disable the circuit if required.
A. Pemberton

Sheffield

Voltage-change

detector

This detector produces a negative pulse when the input voltage changes direction by more than about 15 mV . The differenleading edge of a voltage change and the output switches positive or negative. Section B converts any pulses from IC_{1} which are 4.5 V or greater to negative pulses. Section C is a standard monostable circuit
with a delay of 5 s set by the RC network. The additional circuit at the input of section A is necessary if the detector is used with a cadmium sulphide cell or a thermistor. The voltage fed to the detector input is restricted to between $1 / 3$ and
$2 / 3 \mathrm{Vcc}$. Other op-amps can be used for IC_{1} provided they have an input impedance of around 20M Ω.
M. L. Ford

ww - 022 For further details

New Line of Wave Solderable Heat Sinks

Thermalloy International offers 35 different styles of wave solderable heat sinks for TO-3 and plastic packages. Styles include board mounted stampings and flat sided extrusions.
Solderable Stud ${ }^{\text {TM }}$ Heat Sinks allow the heat sink/device to be preassembled and treated as a single component on your production line. It is dropped into plated-thru holes in the P.C Board and wave soldered with other components. Eliminates hand soldering and extra inspections to reduce your production steps by 50%. All work can now be done from one side of the board, and less mounting hardware is required.
For product samples and full technical literature
contact MCP Electronics.
 contact MCP Electronics.

MCP Electronics Ltd.,
38 Rosemont Road, Alperton, Wembley, Middlesex Telephone 01-902 5941. Telex: 923455 .

Thermalloy International Advancea teconooogy in semiconduccora accessories

Transient response of audio filters

Sharp cut-off filters are not always the best. Time domain considerations can lead to a reduction in coloration
by D. C. Hamill, M.Sc.

A filter with a sharp cut-off can cause an audible coloration which sounds like a resonance near the filter cut-of frequency. The sharper the filter cut off, the worse the coloration appears to become. It also seems to become worse as the cut-off frequency is
moved further into the audible frequency range. This article sets out to explain this effect and suggests how it may be avoided, concluding with a practical design for a variable cut-off low-pass filter.

To try to understand the coloration effect noticed with sharp cut-off filters first think about the human hearing mechanism. As of hearing which is generally accepted and which explains all the experimental phenomena, but it seems that the analysis of perceived sounds by the ear and brain is performed partially in the frequency do-
main and partially in the time domain. That is to say, it has been found that although certain parts of the basilar membrane in the ear respond to specific frequency bands, much of the experimental evidence refutes a "frequency analyser"
description of the hearing process. If a signal is produced consisting of two pure tones with frequencies of 200 and 300 Hz the ear hears a pitch corresponding to a frequency of 100 Hz . This can be partly explained by the generation of a dif-
ference tone due to intermodulation in non-linear parts of the ear, but it also occurs at low sound pressure levels where it should be negligible. Looking at the combined waveform of the two tones, Fig. 1 , this repeats itself with a period equiva-
lent to 100 Hz . The term periodicity pitch describes this sort of phenomenon which indicates that the ear uses a time-based pitch analysis which detects the repetition rate rather than a Fourier type of analysis dal frequency components.
Another manifestation of periodicity pitch ${ }^{1}$ can be demonstrated by producing a random signal and mixing a delayed version of this with the original. The ear hears
a pitch which depends on the time delay. If a pitch which depends on the time delay. If
this is done with a music signal and the delay is continuously varied one gets the effect known in pop music as phasing, better described as time separation pitch. Again, there is no Fourier com
responding to the pitch heard.
A discussion of the various theories of
hearing and the evidence which supports them is given by Licklider ${ }^{2}$: the time-domain-analysis explanation is becoming more widely known and studied, although it is not universally accepted.
Autocorrelation approach The model of time domain analysis most commonly put forward is the autocorrela-
tion process. Autocorrelation measures how similar a signal is to a delayed version of itself. Mathematically the autocorrelation function is
$R(\tau)=\overline{x(t), x(t-\tau)}$
the bar over the product representing a mean value taken over all time. The signal delay τ, the samples multiplied together, and the product averaged over many samples to give $R(\tau)$. A schematic system for measuring autocorrelation functions is normalized to one at $\tau=0$. Autocorrelation functions of some simple signals are shown in Fig. 3. A periodic signal such as a sine or square
wave has a regularly undulating autocorre wave has a regularly undulating autocorre-
lation function whereas white noise, a completely random signal, has an autocor-

Fig. 1. Waveform produced by adding 200 Hz sinusoid to 300 Hz sinusoid has a repetition rate of 100 Hz , although there is no fundamental component at this frequency.
 nal for evaluating the response of systems because the degree of randomness of the output can easily be assessed. If white nith an ideal amplitude response - that is one which passes components below the cut-off frequency but completely stops those above cut off - a strong periodicity appears in the autocorrelation function. This indicates that the ideal frequency-do-
main filter is unsuitable for time-domain processing. For no audible ringing, the white-noise autocorrelation function of a network should show no ripple. Compare Fig. 3(d) with (f) which is for a simple low pass RC section. This illustrates the fact
that simple networks producing a $6 \mathrm{~dB} / \mathrm{oc}$ tave slope can be used without introducing coloration into the signal.
The autocorrelation function of a signal has been tied up with pitch and coloration subjective weighting function $\rho(\tau)$ shown in Fig. 4. The pitch and coloration threshold, according to Bilsen, is given by

$$
\frac{R(\tau)}{R(0)}>\frac{0.063}{\rho(\tau)} .
$$

That is, if the normalized white noise autocorrelation function of the system exceeds $0.063 / \rho(\tau)$ coloration may be detected in the signal.
he pitch of white noise fed through a high-pass or low-pass filter is closely related to its cut-off frequency. This would be expected from its autocorrelation funcripples of a period corresponding to off frequency: compare this with the auto3 (a) cotion function of a sine wave, Fig 3 (a). This pitch and cut-off frequency relationship was confirmed experimentally However, with high-pass filters having a However, with high-pass filters having a
cut-off frequency below about 600 Hz anomalous results are obtained which suggest that coloration is not audible with high-pass filters in the frequency range
where they are usually used. where they are usually used

Fig. 4. Experimental autocorrelation
weighting function is based weighting function is based mainly on
work concerned with room acoustics, hence the time scale is in tens of

Fig. 3. Autocorrelation functions of various signals.

Arbilrary waveform applied to

 Arbirrary waveforinpư of network
 Waveform is approximated
by staircase function

Staircase can be broken down

Each step produces step
response characteristic response
of network.

Individual step responses can be added to obtain
output from network.

[^1] arbitrary input waveform can be found.

(a) Ideal frequel

frequency domain

(d) 3 3rd order
aliter
(e) Simple RC filter.

The sensation of pitch becomes mor definite as the slope of a sharp cut-off filter is increased. Rakowski ${ }^{6}$ has reported expeiments with filters having slopes of 15,50
nd $150 \mathrm{~dB} /$ octave above -3 dB freque cies of between 200 Hz and 5 kHz . He found that "The accuracy of the pitch idgement decreases for extreme low and high frequencies. The increase in steepness of noise band skirts improves the accuracy of the pitch judgements but at $15 \mathrm{~dB} /$ octave judgement may still be made with considerable consistency." This is in which predicts increased coloration as the filter becomes nearer to the ideal fre-quency-domain filter.
From the weight of experimental evidence then, an autocorrelation theory of unction appears to explain the phenome non of filter coloration satisfactorily.

Step response

The white-noise autocorrelation function of a filter is not a very familiar quantity to many electronics engineers although they of signals. (An oscilloscope is a timedomain display system, invaluable for studying the effect of networks on pulses.) The step response of a network is closely elated to its white-noise autocorrelatio signal is the time domain description of its power spectral density (its "frequency spectrum") and contains the same inrmation. Given a white noise input, the oower spectral density directly depends on ng this transfer function one can find the mpulse response or the step response of he network by means of the Laplace ransform. So the step response is a close cousin of the white-noise autocorrelation as well as additional phase information. If the step response of a network is nown, the response to an arbitrary signal or example speech or music, can mated by a staircase function, as in Fig. 5 , and by taking smaller and smaller steps
one can get as close to the original as neces sary. This staircase function can be decomposed into the sum of a large number of positive or negative steps of varying mag ponse when passed through the network If these are added together the resulting waveform is the response of the network to direct connection between the step res ponse of a network and its response to rea signals.
By studying the step responses of some balized and real filters these can be re ed to their white-noise autocorrelation nnctions and criteria for audio filters can be established. Consider first the ideal fre The step response shown in Fig. 6(a) ringing as would be expected. There is als a precursor, that is a response before the input step is applied, pointing to the non realisability of this ideal filter. A real ap proximation to this type of response is the ind-order Butterworth response show there is still a lot of ringing. This sort of filter is common in audio equipment a though it is by no means optimal for the application.
he ideal time-domain filter is one with a fast rise time and no overshoot or ring ponse follows a Ged if the amplitude res phase response is linear. The step respons of a Gaussian filter has a precursor, but practical filter, a third-order Laguer response with no precursor and negligible ringing.
The subject of filter families such as Butterworth, Bessel, Chebyshev, is too covered in the literature ${ }^{7}$.

Design criteria

Basically, there is a need for as much atte nuation as possible in the stop band with

* This is equivalent to convolution of the impulse response of the network with an arbirrary tion integral method.

Fig. 6. Step response and amplitude and (e) the true Gaussian shape is shown in broken line.
flat amplitude response in the pass band. A teep slope in the stop band is not harmfu itself (the Gaussian filter approaches a infinite slope) but the shape of the res
ponse curve in the transition region be ween the pass band and the stop band is important. Looking at the Gaussian, La suerre and simple RC filters, there is little or no ringing when the cut-off is approxi of attenuation. The phase response associated with this type of cut-off tends to be linear in the case of practical transfer func tions, and this has sometimes led to the misconception that filters should b
specified to have a linear phase response to minimize ringing. The step response con tains information which is discarded in th autocorrelation response. This implies that a pure autocorrelation theory of hearing ity to phase information, but there ha been considerable controversy over the degree to which phase shifts are detectable. What is important in the present context is hat phase linearity, by isself, is no gua antee of adequate audio filter design.
One could choose a sharp cut-of ponse characteristic and then add an allpass phase equalizer to give good phas linearity, but this would not give freedom from ringing. The ideal frequency-domain zero phase there is bad ringing, Adjusting the phase response near the band edge can alter the symmetry between precursor and overshoot but can never remove the ring ing.
The conclusion must be drawn that th main factor governing transient response is
the shape of the amplitude response rollthe shape of the amplitude response roll-
off in the transition region. For best result this should have a Gaussian shape, that is should follow

$$
\left|\frac{v_{\text {out }}}{v_{\text {in }}}\right|=\exp \left[-\left(\frac{f}{f_{-3 d \mathrm{~B}}}\right) \frac{\log _{e} 2}{2}\right] .
$$

Fig. 7. Amplitude response curves for a simple variable slope
Fig. 7. Amplitude response
filter (after Leakey, ref. 9).

Fig. 8. In variable low-pass filter overall response is the sum of a Fig. 8. In variable low-pass filter overall response
first-order and a variable second-order response.

This is unrealisable as it stands but i can be approximated by either a Taylor o a Laguerre series expansion. Several othe Gaussian roll-off, for example the wellknown Bessel or Thomson family and the in-line pole approximations.
While a Gaussian roll-off is ideal from the point of view of step response, the ear
is not so critical of ringing as the cut-off frequency is raised. This implies that a sharper cut may be used at high frequencies without being objectionable
As filters can be broken down into first and second-order terms, the last being res able Q -factor of the various terms in the transfer function could be related to fre quency as a criterion for audio network
High-r

High-pass filters are less critical in their design. As previously mentioned, although at high cut-off frequencies ringing is noticeable, below about 600 Hz this effect subjectively disappears. The design of tional frequency-domain considerations. For example, a typical rumble filter might have a third-order Butterworth response with a -3 dB frequency of 24 Hz , giving 1 dB drop at 30 Hz .
$\star \star$ Research into the effect of similar transfe
functions in introduc functions in introducing audible coloration has
been carried out at the University of Surrey by J. M. Bowsher and K. Moulana

Variable low-pass filter

One solution to the problem of ringing adopted in some high fidelity preamplifier is to use a switched cut-off frequency and to add another filter control known as a sope or roll-off control. In one type ${ }^{9}$ a slope control mainly affects the rate of fall-
off in the stop band, thus sacrificing off in the stop band, thus sacrificing
wanted attenuation to reduce the unwanted coloration, Fig. 7. The provision of three switched frequencies plus a slope control gives a comprehensive filtering facility in the sense that the user has a wide
choice of filter characteristics. I believe this is unnecessarily complicated and that a single control can be adequate for mos applications if correctly designed Essentially what is required is a steep final rate of attenuation, say $18 \mathrm{~dB} /$ octave but with a gradual initial roll-off approxipossible if the cut-off frequency is mad smoothly variable rather than switched. Secondly, the ear is less sensitive to ringing at the upper end of the spectrum than more permissible (and desirable) near the band edge. The object of this design was therefore to obtain an 18 dB /octave slope which could be shifted along the frequency spectrum whilst automatically changing it shape in the transition region to give the
maximum amount of attenuation without coloration at any setting. This aim has been achieved in the following way.
A second-order low-pass section has a
peak in its response which depends on its -factor. If he Q -factor is allowed to in crease as the cut-off frequency is in
creased, curves like those of Fig 8 are obtained. If this rising response is offset by a first-order response falling at $6 \mathrm{~dB} /$ octave the result is an almost-flat pass-band response with a variable cut-off frequency, the initial roll-off becoming steeper with
increasing cut-off frequency. (In practice, the first-order section must also have a variable cut-off frequency to avoid a peaked response.)
The filter was
The filter was designed to be variable between a Bessel response with a cut-off a
6.3 kHz , and a 0.5 dB ripple Chebyshe response with a 20 kHz cut-off. The subjective sensation of pitch is approximately linear with logarithmic frequency subjective effect of reducing the that width of a signal is also nearly proportiona to the logarithm of the cut-off frequency, this law has been incorporated in the variable control. The resulting circuit is analysed in the Appendix and its compute
response curves are given in Figs $9 \& 10$.

Practical circuit

A practical circuit suitable for use in high-fidelity preamplifier or in profes sional audio equipment is given in Fig. 11 In addition to the variable low-pass facility
there is a fixed rumble filter built around the input stage which cuts off at 18 dB octave with a Butterworth characteristic.

The second amplifier is a push-pull ar rangement which was found necessary be-
cause of capacitive loading effects; a singleended amplifier would give rise to considerable second harmonic distortion at high requencies. Capacitor C_{2} is included for
stability, while C_{1} and C_{5} bypass r.f. without affecting amplitude response. For best results the source resistance should be low preferably less than 100Ω, but up to $1 \mathrm{k} \Omega$ is permissible if R_{1} value is reduced to compensate. A load resistance of $4.7 \mathrm{k} \Omega \mathrm{o}$ drive lower resistances at a higher distor tion figure. Capacitors 3 and 4 should be low-leakage types such as tantalum bead to reduce noise from the control potentiome

Measured performance of the variable filter

Amplitude response	Very close to computed curves -1 dB a 36 Hz and -15 dB at 15 Hz
Max. input level	$+15 \mathrm{dBm}(4.4 \mathrm{~V}$ r.m.s.) at any frequency
Noise level	-93 dBm max. (measured in noise bandwidth 20 Hz to 20 kHz , input shorted)
Gain	-0.5 dB at 1 kHz
Max. load impedance	$4.7 \mathrm{k} \Omega$ (but see text)
Max. source impedance	100Ω (but see text)
Distortion	0.1 \% t.h.d. at any frequency and input

channel, stereo ganging is very easily achieved. (A version of the circuit was
built using 741 op-amps as unity-gain amplifiers but their limited gain-bandwidth product caused deviations from the theoretical amplitude response.)
Judged subjectively, the filter is very
effective in obviating the coloration effective in obviating the coloration. Using
a pink noise input, the circuit does not significantly colour at any setting and the potentiometer seems to control the filtering action in a smooth and linear manner. With a music signal, lowering the cut-off
frequency progressively removes "edgifrequency progressively removes "edgi-
ness" from the sound, causing instruments such as cymbals and harpsichord to recede and making the sound duller without being coloured.

References

1. M. E. Mclellan and A. M. Small, Time
separation pitch associated with noise pulses, \mathcal{F}. separation pitch associated with noise pulses
Acous. Soc. Am. vol. 40 (1966), p. $570-82$. F. A. Bilsen, Repetition pitch: monaural interaction of a sound with the repetition of the
same, but phase shifted sound, Acustica vol 17 (1966), p. 295 -300.
2. J. C. R. Licklider, Three auditory theories,
in Psychology: a study of science, ed. S. Koch, in Psychology: a study of scie.
Study $1, M c G r a w-H i l l$
(1959)
3. F. A. Bilsen, Repetition pitch - its implica-
tion for hearing theory and room acoustics, in tion for hearing theory and room acoustics, in Frequency analysis and periodicity detection in A. W. Siithoff, Leiden (1970).
4. A. M. Small and R. G. Daniloff, Pitch of
noise bands, Acous. So. Am vol 41 (1971), noise bands, \mathcal{F}. Acous. Soc. Am. vol. 41 (19.
p. $350-4$. (German, with English abstract.) p. 350-4. (German, with English abstract.)
5. A. Rakowski, Pitch of filtered noise, International Congress on Acoustics, Tokyo 1968, A-5-7, A-105.
. F. F. Kuo, Network analysis and synthesis,
2nd edition, Wiley, 1966 . D. S. Humphreys, Analy
sis of electrical filters, Priansist, design and syntheH. J. Orchard and G. C. Temes, Filter design
using transformed variables, IEEE Trans. vol. CT-15, 1968 , p. 385 variabies, (contains a comprehen-
sive bibliogranh of sive bibliography of filter design information).
IEEE Trans. vol. CT-5, no. 4, (Dec. 1958). Special issue on filter design.
SEECial Trasue on vol. CT-15, no. 4, (Dec. 1968).
SEecial issue on fiter design. Special issue on filter design.
6. L. E. Weaver and D. C.
7. L. E. Weaver and D. C. Broughton, Gaus-
sian filters for pulse shaping, Radio Electronic sian iilers for pulse shaping, Re.
Eng. vol. 41, (1971), p. $457-62$.
J. Linsley Hood, Direct-coup
J. Linsley Hood, Direct-coupled high quality
stereo amplifier, part $3, H i-F i$ News vol. 18, stereo amplifier,
p. $60-3$, , Jan. 1973.
8. D. M. Leakey, Inexpensive variable-slope
filter, Wireless World, vol. 62,1956 , $563 / 4$ filter, Wi.reless World, vol. 62, 1956, p. $563 / 4$. ity of changes in program bandwidth, Bell ity of changes in program band
System Tech. \mathcal{J}. vol. 23, (1944), p..

Appendix: Analysis of variable low-pass filter
The right-hand part of the circuit, Fig. A1, is a
second-order Sallen and Key section with yaria second-order Salien and Key section with varia
ble feedhack controled by transfer function of this part, $V_{d} V_{x}$, is
$\frac{1}{1+2 s C_{3} R_{2}\left(1-A_{1}\right)+s^{2} C_{2} C_{3} R_{2}^{2}\left(1-A_{1}\right)}$ This has a natural frequency

Which gives a -3 dB point at $\omega=1.76 \omega_{1}$. Normaizing to $\omega_{1}=R_{1}=R_{2}=1$, gives C
$=0.431, C_{2}=0.541, C_{3}=0$ substituted into equations 1 . Now suppose a 0.5 dB ripple Chebyshev transfer function is re. Then

```
This has a natural frequency
```

$\omega_{0}=\frac{1}{R_{2} \sqrt{C_{2} C_{3}\left(1-A_{1}\right)}}$

$$
\alpha=\frac{2.53}{\omega_{2}}
$$

$$
\beta=\frac{2.44}{\omega_{2}{ }^{2}}
$$

and

$$
Q=1 / 2 \sqrt{\frac{C_{2}}{C_{3}\left(1-A_{1}\right)}}
$$

As A_{1} increases, both ω_{0} and Q increase. The
left hand part of the circuit has a response given

$$
\gamma=\frac{2.30}{\omega_{2}{ }^{3}}
$$ left

by

$$
V_{\mathbf{x}}=\frac{V_{\mathrm{i}}+s C_{1} R_{1} A_{1} A_{2} v_{0}}{1+s C_{1} R_{1}}
$$

Combining the two transfer functions gives the
overall function

$$
\frac{v_{11}}{v_{i}}=\frac{1}{1+\alpha s+\beta s^{2}+\gamma s^{3}}
$$

where

$$
\left.\begin{array}{c}
\alpha=2 C_{3} R_{2}\left(1-A_{1}\right)+C_{1} R_{1}\left(1-A_{1} A_{2}\right) \\
\beta=\left(C_{2} C_{3} R_{2}^{2}+2 C_{1} C_{3} R_{1} R_{2}\right)\left(1-A_{1}\right) \\
\gamma=C_{1} C_{2} C_{3} R_{2}^{3}\left(1-A_{1}\right)
\end{array}\right\} 1 .
$$

and
This is a third-order low-pass function with The minimum natural frequency occurs when The minimum natural frequency occurs when
$\mathrm{A}_{1}=0$. Suppose this is to correspond to a Bessel
transfer function. Then
which gives a -3 dB point at $\omega=0.989 \omega_{2}$. Comparing these coefficients with those of
equations 1, three equations in the variables $A_{\text {Imax }}, A_{2}$ and $\omega_{2} / \omega_{1}=5.65$. Notice that the cut-off frequency range is now
defined by the ratio $0.989 \omega_{2} / 1.76 \omega_{1}=3.18$, demined by the ratio $0.989 \omega_{2} / 1.76 \omega_{1}=3.18$, which can be denormaited to give a range of
6.28 to 20 kHz . This frequency range is determined solely by the choice of transfer functions;
the two used here give a large range and useful the two used here give a large range and useful
response curves. For comparisons, a But-
terworth terworth transfer function when A_{1} is at its
maximum gives a denormalized range of only 11.8 to 20 kHz .

The plot of \log cut-off frequency versus A_{1} is
almost linear, as required; however the addialmost linear, as required; however, the addi-
tion of a resistor between the top of the potention of a resistor between the top of the poten-
tiometer and its wiper improves the law. The use of an amplifier for A_{2} is avoided by splitting
C_{1} into two C_{1}. connected to earth and $\mathrm{C}_{1}^{\prime \prime}$ C_{1} into two, C_{1} ' connected to earth and C^{2}
connected to the output of A_{1}, such that

$$
\begin{gathered}
C_{1}^{\prime}=\left(1-A_{2}\right) \\
\text { and } C_{1}^{\prime \prime}=
\end{gathered}
$$

The final schematic circuit denormalized to an impedance level of $5.1 \mathrm{k} \Omega$ and an upper cut-off
frequency of 20 kHz is shown in Fig. A2

Designing with microprocessors

10 - Concluding interrupt-driven circuits

by D. Zissos and G. Stone Department of Computer Science, University of Calgary, Canada

The last two articles on interrupt described operation, applications and design procedures. This article covers iterrupt controllers and outlines th interrupt chips.

The function of interrupt controllers is to generate an interrupt request, IRQ, signal when one or more flags are present, and to ion which will allow it to identify the source of interruption. Fig. 1 last month showed the basis of interrupt systems, and the step-by-step operation is described in reference 1 . Interrupts are classified as he type of information made available to the microprocessor. In vectored interrupts, the vectoring address is generated externally prior to program interruption. In non-vectored types, the controller of the individual flags, and it is left to the programmer to identify the source of interruption. For describing interrupt controllers, it is assumed that the higher he suiority unless otherwise specified

Controllers for non-vectored interrupts
The controller for non-vectored interrupts in Fig. 2(a) consists of an i/o port and two gates. The IRQ signal is generated by ORing the flag signals. When program interruption occurs, the programmer saves into the accumulator by simply executing n Input instruction with address Ap in this case. The processor status is saved to allow the interrupted program to continue Arrectly.
After the flag bits are stored in the accuach bit in turn by shifting left one posi ion the contents of the accumulator hrough the carry flip-flop, and checking hether it is set, $\mathrm{C}=1$, or reset, $\mathrm{C}=0$, see Fig. 2(b). If the flip-flop is set, control of the program is transferred to the appropriate interrupt routine, otherwise the shift-and-test operation hown in Fig. 3.
At the end of each service routine the are enabled and the interrupted program is resuned by executing a Return instruc-
ware polling, involves no special hardwar and is often favoured by people familiar with software. However, it is slow and if a large number of interrupts are necessary, certain real-time applications.

Controllers for vectored interrupts
The function of controllers for vectored interrupts is to identify the source of in raption before generating the interru equest signal, and to load the progran ddress, with the appropriate vectoring errupted. Fig 4 shows tro method f enerating vectoring addresses. In (a) the vectoring address is generated directly by he interrupt controller but in (b), the in terrupt controller sets a pointer to the emory location which holds the appropriate vectoring address and releases it and the basic operation of this device de-
pends on the execution of the three-byte Call instruction which allows direct access the program counter ${ }^{2}$. This is because the data bus is linked to the program counter during the last two machine cycles as
shown in Fig. 5. The 8259 issues an interrupt request signal when the microprocessor operation is to be interrupted, and waits for the processor to respond with NTA. When this occurs it feeds the data bus with the opcode of the Call instruction
and then the two-byte vectoring address. The opcode is loaded into the instruction register and the vectoring address into the program counter as shown in Fig. 5. Beore the vectoring address is loaded, its ontents are automatically stored in stac
The second method of generating vec toring addresses is used by the Motorola 6828^{3}. In common with all interrupt controllers, the 6828 generates an interrupt request signal in response to exter-
nal flags and waits for the microprocessor to respond. The processor responds by outputting consecutively addressed signals

(a)

Fig. 2(a). Block diagram of an interrupt controller for non-vectored interrupts,

WIRELESS WORLD AUGUST 1981 FFF8 and FFF9. The presence of these
signals on the address bus activates the signals on the address bus activates the
interrupt controller, which then modifies their values in accordance with the inerrupt flags, as shown in Fig. 6. Address bits 1 to 4 are replaced by four new bits $z 1$ to z4. One method of achieving this, using a priority encoder (flag sorter) and some
logic, is shown in Fig. 7^{4}. The priority encoder identifies the flag with the highest priority, see Fig. 8. For example, q2q1q $0=010$ when flag 2 is identified and
q2alq $0=111$ if flag 7 is present. The values of the modified address bits are also given in Fig. 8 which shows

$$
\begin{array}{ll}
\mathrm{z} 1=\mathrm{q} 0 & \mathrm{z} 3=\overline{\mathrm{q} 2} \\
\mathrm{z} 2=\mathrm{q} 1 & \mathrm{z} 4=\mathrm{q} 2
\end{array}
$$

A priority encoder and inverter circuit is shown in Fig. 9.

Restarts
Restarts are one-byte instructions whose format is 1 ldddll11 where ddd are variables. When this instruction is executed, the program counter is pushed on stack,
and bytes 00000000 and 00 ddd 000 are and bytes 00000000 and 0 daddo 0 . are tion of a restart instruction transfers program control to one of eight locations
specified by 0000000000 ddd 000 , see Fig specified by 0000000000 ddd 000 , see Fig.
10 . The restart instruction can be gener10. The restart instruction can be gener-
ated by a priority encoder and, because it ated by a priority encoder and, because it
is loaded into the instruction register rather than the program counter, all that is required is an i/o port and one AND gate.

References

1. Zissos, D. Interrupt-driven circuits, Wireless World, July, 1981,
2. MCS-85 User's Manual, Intel Corporation, 3. The Complete Motorola Microcomputer Data Library, Motorola Inc., 1978 4. Zissos, D. System Design with Microprocessors, Academic Press, 1978.

Fig. 10. Block diagram showing the operation of Restarts.

Fig. 9. Practical circuit for modifying

New Quad electrostatic loudspeaker

Electronic detection of meteors

Two young avionics engineers, armed with
keen interest in astronomy, plus material help keen interest in astronomy, plus material help
from their company, are making a contribution from their company, are making a contribution
to an international scientific experiment this August, involving a comet which appears once in every 119 years. David Fosberry BSC, 25,
Project Engineer with Marconi Avion Proiect Engineer with Marconi Avionics
Limited and his partner Joe Cardwell, 22, Development Engineer, have designed an electronic detection instrument, the first of its count them automatically.
The new Electronic Meteor Detection System (EMDS) is to be used as part of an international experiment, organised by the Meteor Section of
the British Astronomical Association. Known as he british Astronomical Association. Known as
Proiect Perseid, it involves studying the appearance of the Perseid meteor stream, which is
associated with the comet known as Swiftassociated with the comet known as Swift-
Tuttle 1862 III, recorded only once before and
due to reappear this year.
The EMDS has been designed to meet the
requirements of Europe's largest amateur group requirements of Europe's largest amateur group
for meteor observation, the South Downs Astronomical Society, whose President, celebrated
astronomer and broadcaster Patrick Moore, is taking a personal interest in the Project.
The South Downs Astronomical Society's 80 members are combining their efforts to observe
the comet and its many thousands of rapidythe comet and its many thousands of rapidly--
moving meteors, as their paths cross the earth's moving meteors, as their paths cross the earth's
orbit. In addition to the new electronic means of detection, the Society is using visual observation
and photographic methods, to gain important and photographic methods, to gain important
information about the behaviour of meteors, which can yield a better understanding of the nature and origin of the solar system itself.
The two Marconi Avionics enginers, The two Marconi Avionics engineers, and
some 20 other young scientists from schools and universities, are traveelling from schools and Downs team to the Aubrac mountains in the
Massif Central of France, where, at an altitude
of 1200 metres, the best possible conditions will
be obtained for their acquired by the Society's team from late July
until is expected to be at a maximum. Usually, meteors are observed by eye, as brief
streaks of ionised streaks of ionised gas, radiating in all directions,
as if from an invisible point. Projecting the as if from an invisible point. Projecting the
tracks back towards their apparent source, (known as the ""radiant"), indicates which
meteors are of the Perseid stream meteors are of the Perseid, stream. To aid the
human observers, an "all-sky camera" system is human observers, an "all-sky camera" system is
used and it is with this that the new electronic equipment is associated.
The EMDS responds to the transient streaks The EMDS responds to the transient streaks
of light which characterise part of each meteor's
path. The relatively constant back ground light path. The relatively constant backech meund light
from stars and planets is cancelled out automatfrom stars and planets is cancelled out automat-
ically and an electronic tally is kept of the total
between each occurrence, to an accuracy of 10
msec (one hundredth of a second). All the human observer has to o o is detect which are
Perseids and which emanate from other soures. Perseids and which emanate from other sources.
The results will help to determine whether of The results will help to determine whether or
not the Perseid meteors are occurring at random not the Perseid meteors are occurring at random
and if dense "knots" of more recent material are
present in the stream - questions of present in the stream - questions of particular
importance to the better understanding of comets and their meteors.
 is the first automatic meteor counting equip-
ment to be built, and its use is expected to ment to be built, and its use is expected to
encourage the more widespread use of electronic
detection detection and counting techniques among amateur astronomers everywhere. The new unit is
to undergo official trials at the South Downs to undergo official trials at the South Downs
Astronomical Society's Observatory site on the Astronomical Society's Observatory site on the
Trundle, Goodwood, near Chichester, before
being taken to France.

UK satellite broadcasting company formed

Following the Home Secretary's approval for an
early start to satellite broadcasting in the UK in early start to satelilite broadcastung in the UK (in
the recent Home Office Study - News, July issue), a British company, probably the first of
several, has been formed to several, has been formed to provide the
hardware for this new medium. Called the Satelhardware for this new medium. Called the Satel-
lite Broadcasting Company, it has been formed
ointly by N. M. Rothschild jointly by N. M. Rothschild, the merchant
bankers, and British Aerospace, who are already bankers, and British Aerospace, who are already
involved in the construction of satellites. The new company plans to produce and launch satellites capable of transmitting programmes on two
channels. These will be modified versions of the ECS - European Communications Satllit (see Wireless World, December 1978), a satellite
which is similar to the OTS2 now in operation Dynamics Group for the European Space Agency.
The project is still subbect to official approval
and plans need to be worked oft in and plans need to be worked out in detail. It is system became operational time before such a To receive the broadcast in the bome years. To receive the broadcast in the home a one-
metre dish antenna would be needed which with the associated electronic equipment could add $£ 200$ to the price of a tv receiver. Community
receiving stations with cable distribution to receiving stations with cable distribution to
homes is another possibility. omes is another possioling When one considers that British Telecom
spends millins of pounds each day on
equipment for installation, it becomes equipment for installation, it becomes
apparent that they need to keep close apparent that they need to keep close
quality checks on what appears to be very mundane apparatus. Here the sound output is being checked on a loudspeaking
telephone in the anechoic chamber of British Telecom's Quality Assurance laboratories in Islington, London. Facilities
at the laboratories include an artificial at the laboratories include an artificial
mouth and ear for testing telephones, a photometry laboratory for testing lamps
ranging ranging from those used for industria
lighting to the miniature bulbs for ighting to the miniature bulbs for are listed by the British Calibration Service and carry out calibration tests on electrica measuring equipment, including testing
servicing and calibrating some 4,000 oscilloscopes each year.

For many years, whenever one read a review of
a new loudspeaker, the in aw loudspeaker, the 'standard' speaker used because development began in 1963) known to its engineers as FRED (full range electrostatic doublet).
Peter
Peter Walker postulated that if a very light
diaphragm could be made to particle motion found at an imaginary plane some distance from, and normal to the direction
of propogation from a theoretical ideal source, of propogation from a theoretical ideal source,
the result to the listener would be the same as if he were hearing that ideal source. The Quad ESL-63 achieves this by means of a very light
electrically polarised diaphragm suspended beelectrically polarised diaphragm suspended be-
tween two sets of rigid and acoustically transparant (they have hole in them) concentric annular
electrodes to which the signal is fed through electrodes to which the signal is fed through
sequential delay lines. The sound pressure patsequential delay lines. The sound pressure pat-
tern produced is a replica of that from an ideal tern produced is a replica of that rrom an ideal
source placed some 30 cm behind the plane of
the diaphragm. The motion of the diaphram is the diaphragm. The motion of the diaphragm is
roughly analogous to the wave motion which roughly analogous to the wave motion which
results when a stone is dropped into a still pool. This configuration, says Quad, gives the designer complete control over the directivity of
the loudspeaker. As a dipole with a figure-ofthe loudspeaker. As a dipole with a figure-of-
eight dispersion pattern, there is no radiation in tigh plane of the diaphragm and the ratio of
direct to reflected sound is much higher than direct to reflected sound is much higher than
from an omni-directional source so there is a from an omni-directional source so there is a
great improvement in the localisation of the stereo image.
Visually
Visually the ESL-63 is a great improvement
over the old ESL and does not took like a room over the old ESL and does not look like a room
heater. It has a height of 92.5 cm and a width of 66 cm . The depth of 27 cm includes the base containing all
mains supply.
and
The nominal resistance is 8Ω and this is al-
most purely
The nominal resistance is 8Ω and this is al-
most purely resistive. It has a sensitivity of

The Quad ESL-63 Electrostatic Loudspeaker with the grille cloth removed.
The concentric annular electrodes which 'spread' the sound pressure pattern across spread the sound pressure pattern.
the diaphragm can be clearly seen.
$1.5 \mu \mathrm{bars} / \mathrm{V}$ referred to 1 M , which is 0 Vrms continuous, 40 V for undistorted maximum peak output with a maximum permitted
peak input of 55 V . The maximum output is $\mathrm{N} / \mathrm{m}^{2}$ at 2 m on axis. The bandwidth with refernce to -6dB limits is 35 Hz to over 20 kHz . It is expect
a pair.

Microprocessors and product design - a self-study course

The Open University is now offering a new
self-study course for engineers and designers on self-study course for engineers and designers on
microprocessors and product design. microprocessors and product design.
It shows how to use microprocessors in product design and covers the complete sequence
from customers' specification to final design from
stage.
Micre stage.
Microprocessors and Product Design: A course
for Engineers does not assume or require for Eninineers does not assume or require
previous knowledge of microprocessors and
involves between 60 and 70 hours It comprises five books specially writ self-study; a file of date sheets and technical liferature; a fully a ssembled microcomputer
system based on the Intel 8085 microprocesor system based on the Intel 8085 microprocessor
with full alphanumeric keyboard which interfaces with students' own tv sets and cassette recorders; a prototype development board to be
driven by the microcomputer in various configdriven by the microcomputer in various configand an experiment book. containing practical
work. The course fee is $£ 395$. There are no tv work. The course fee is $£ 395$. There are no tv
broadcasts or tutorials, so allowing students to broadcasts or tutorials, so
fit study in as best suits them.
The course follows through the complete de-
sign sequence for microprocessor-based pro-
sign sequence for microprocessor-based pro-
ducts: customer specification; overall system
design; hardware and software development;
prototype evaluation and production design. Case studies are brought in to illustrate points tudents to check progress.
The experimental work does not have to be done at the same time as reading the texts. The
initial experiments familiarise students with use initial experimens forer and peripherals, while of the microcomputer and peripherass, while
later ones follow the design sequence for a microprocessor--based product.
The course follows an earlier The course follows an earlier one from the
Open University aimed at managers to give Open University aimed at managers to give
hem insight into how the process of product development is affected by microprocossors.
This was bought fy 3,800 managers drawn from This was bought by 3,800 managers drawn from
Il industrial sectors. A survey showed that students on average passed on the course to five colleagues and found it to be relevant and of
high quality. high quality.
The course The course is written by microolectronic exMicroprocessor Application Project of the Department of Industry.
For course details
For course details and order form, write to
Open Centre for Continuing Education, The
Opiversity, PO Box 188, Milton Kennes Open University, PO Box 188, Milton Keynes,
MK3 6 HW or telephone 090879058 (24-hour MK3 6HW or telephone 090879058 (24-hour
service).

Viewdata oils capital's wheels

Stockbrokers in the UK can now turn to electronics to speed up the transmission of
financial information to their clients and so financial information to their clients and so
compete more effectively with their business rivals. A private viewdata service set up by a
位 new company, Videotex International Ltd, will
enable them to send pages of textual informaenable them to send pages of textual hid
tion, such as share prices, company news, commodity prices and research material, to any client equipped with a standard viewdata termi-
nal of the type used by the Prestel public ser-
Thice.
This development, the first of its kind, is in fact an extension of a large private viewdata system already in use at the London Stock Ex-
change. Called Topic (Teletext Output of Price change. Calied Topic (Teletext Output of Price stock market prices on 11000 stockeks and sharest
and also company announcements, exchange and also company announcements, exchange
rates, interest rates and commodity prices. But rates, interest rates and commodity prices. But
Topic is is one-way system, providing informaion only to members of the Stock Exchange. To
enable its stockbroker members to send private enable its stockbroker members to send private
information to their clients, the Stock Exchange is now allowing them to become providers as
well as recipients of information. They will be ble to create and maintain, in the Topic database, their own pages of information specifically compiled to suit the needs of the recipients of this
can also specify precisely can also specity precisely
information. These can be individual clients or groups of clients, and groups with common
nterests roup" - a concept already pioneered by the the Stock Exchange expects to have about ten such information providers.
To make use of this new facility, stockbrokers
can apply directly to the Stock Exchanges nical services department or they can become a "sub information provider" to an already estab-
lished information lished information provider. This second ale-- which is what the new company Videotex International is offering, from a room within the
London Stock Exchange. Formed by Hambros London Stock Len (who provided the Topic computer) and Telemachus (makers of editing and other equipment), the company undertakes consultanly of hardware, but perhaps most important, it offers a variety of methods by which stockbrokers can feed in their pages of textual hrough supervised and unupervised editing, to the use by a stockbroker at his own premises of his own editing terminal, which can either be operated off-line, working into a local magnetic disc store. In the off-line case the contents of the disc store can be transterred in bulk either database. In introducing the service, Harry Fitzgib-
bons, a director of Hambros Bat bons, a director of Hambros Bank, claimed that systems over earlier data processing systems was the familiar appearance of the viewdata termi-
nal. In the past businessmen had been somenal. In the past businessmen had been some-
what repelled by the "high technology" appearance of computer terminals, but because the viewdata terminal was superficially the same as
a domestic television set - and indeed could be ased as such - they felt much more comfortoperate it themselves.

Recharging dry batteries

With a flourish on trumpets Fidelity have an-
nounced their new portable radio, The Battery nounced thiirh new portabie redio, he Battery
Saver, which run on an ordinary PP9-type bat-
tery or from the tery or from the mains. When connected to th
mains, an automatic batery charger and continues to do so even if the set is switched and coninues to do so even i he set is switched
off. Fidelity claim that the battery will last four
times as long and that the radio would almost times as long and that the radio would almos
pay for itself in the cost of batteries over a five year period.
Recharging Leclanche cells is a subject which
has recurred many times has recurred many times; as long ago as 1953
Wireless World published an article by R. W Hallows on 'Reactivating the dry cell'. In 195 we published a description by the same autho
of the Elektrophoor reactivator. This used of the Elektrophoor reactivator. This used
half-wave rectifier with a resistor in parallel to provide 'dirty' dc and proved to be very
succesfful in redepositing successful in redepositing the e inc in the cells.
In a follow-up article in 1958, Mr Hallows reIn a follow-up article in 1958, Mr Hallows re-
ported: "One's biggest surprise on opening the con of a cell which has been many times
can
discharged and subsequently reactivated by discharged and subsequently reactivated by the
Elektrophoor is to find as a rule no trace Elektrophoor is to find as a rule no trace of
lumpy or spongy deposits, but a hard, even inner surface. The superimposed ac (on the dc recharging supply) not only produces this most
desirable result, but also speeds up the proces of depolarisation and makes it more complete." The Elektrophoor was the invention of a Dutch engineer, Miinheer Bee
An Ever-Ready
their PP9 batteries can be rechas told us that they are not disches carged be recharged as long as and as long as the charging current is very
carefully controlled. Any overcharge would lead to the production of gases which would lead to the layers of the battery being forced apart giving a very high internal resistance or open cir-
cuit within the battery The cicular leakroof batteries (with which Mr Hallows was so happy in the 1950 's) are very well sealed and any production of gas inside could lead to a build-up of

News in brief

Technomatic has opened a new retail shop at
305 Edgware Road, London W2 in the centre of 305 Edgware Road, London W2 in the centre of component land'. At the same time they have
become an official distributor for the Texas Instrument range of components.
End of public broadcasting now in sight? is the provocative title of the Royal Television Society's Convention to be held in Cambridge,
17-20 September 1981. examine the transformation of broadcasting which is already under way. The upheaval resulting from satellite transmission, cable distribution and home video is likely to have a
profound effect on the course of broadcasting. The convention will also consider the financing of broadcasting, the effect of the fourth channel and will take a look at the broadening of televi-
sion access and relate this to the work of the new Complaints Commission. Details are available from the Royal Television Society, Tavistock
House East, Tavistock Square, London WC1H 9HR.

Wiilmslow Audio who supply loudspeakers and Kremises at $35 / 39$ Churc, Street premises at 35139 Church Street, Wilmslow,
Cheshire SK9 1AS. Telephone: 0625529599 . One of their latest offerings is a range of
Wharfedale kits, the E50, E 70 and E 90 . The

The Fidelity Battery Saver portable radio
set which incorvorates a battery charger set which incorporates a battery charger for the dry cell battery.
tral carbon rod becoming a lethal weapon. The Spokesman also pointed out that the idea wa not original; Telefunken have produced equip
ment which recharged its batteries, but the ment which recharged its batteries, but th
round cells were chosen and the equip withdrawn from the market very rapidly Cinema usherettes used to hand in their torches
after their shift to have the batteries recher atter their shift to have the batteries recharged
That was thirty or forty year ago. He doubted that the Fidelity radio would be as successful as
was claimed Fidelity was claimed. Firdelity assume that the set would
normally be used on the mains with occasional use at different locations when powered by the batteries. Ever-Ready surveys showed that
portable sets were mosly used portable sets were mostly used on battery
power.
kits are supplied with all panels accurately cut to size and the baffle boards have the necessar speaker apertures cut and rebated as required. new location.
When a home computer becomes popula enough, its users get together to form a users club to exchange experiences, share programs
and news. The ZX80/ZX81 Users' Club is an independent user group for those who have a of ciser from the beginner to the more exper
ienced user who may wish to expand his system. There is a regular newsletter containing articles on basic computing, various aspects of comput-
ing and hardware. There is a software bank' to provide software to members at minimal cost. The club provides technical support for its
members. The address of the club is PO Box 159, Kingston upon Thames, Surrey KT2

Zilog have announced another of the Z series of microprocessors. The Z800 is an 8 -bit microprocessor which is code compatible with
the $Z 80$ and includes multiply and divide in the 280 and includes multiply and divide in-
tructions, a three-times performance improvement over the 280 A , it is available in 8 - or 16 it bus versions and includes an on-board
memory mapper for addressing up to 4 megamemory mapper for addressing up to 4 mega-
bytes of memory. The $Z 800$ will be available in
mid-1982. mid-1982.

After the crash

When a mammoch corporation crashes a lot of the dependennt companieses are affecteded and in the
case of Rank many offshoots, some of them case of Rank many offshoots, some of them
older than the Rank corporation were involved older than the Rank corporation were involved.
We have heard that the Bush Radio brand name We have heard that the Bush Radio brand name
has been accuired by Interstate Electronics,
who market radios, cassette players and who market radios, cassette players and
electronic clock-radios manufactured in the Far East. They have changed their company name East. They have changed their company name
to Bush Radio but will continue to market their existing product ranges under the Instersta
label. Following the closure of Rank-Toshiba, their Plymouth factory for the production of tv r ceivers is to be re-opened by Toshiba Consume
Product (UK) Products (UK) Ltd. The company is operated
through Toshiba (UK) Ltd, the British-based marketing company of the Toshiba Cor poration. The company has recruited its em ployees almost e
shiba personnel.
Meanwhile one of the surviving branches,
Rank Hi Fi, have appointed rive Rank Hi Fi, have appointed a new research and
development manager, Mr Ken Russell, who development manager, Mr Ken Russell, who
will be responsible for co-ordinating all research at Wharfedale, the loudgpeaker manufacturers, and at Heco, the West German sister company.
Mr Russell will also be in charge of speake development and new product co-ordination for the Rank Hi Fi group.

Ken Russell, newly appointed research and

Inmos are ready to sell Described recently in the Guardian as the world's biggest venture capital operation, Inmos
have announced that they have appointed Rapid have announced that they have appointed Rapid
Recall and Hawke Cramer to distribute its proRecall and Hawke Cramer to distribute its pro-
ducts in the UK. At the same time they have
lumnced r.a.m.
The IMS 1400 has 45 ns access time and a maximum power dissipation of 660 mW , which allows for high-density packing. It is the first
commercially available product, claims Inmos, commercially available product, claims Inmos,
to incorporate redundancy, allowing the replacement of memory cells. Currently manufac-
tured in the US, European production of the tured in the US, European production of the
IMS1400 will commence in the large scale 'manufacturing facility' due to go into operation in Newport, Gwent in mid-1982.
Considering that $£ 50$.
has been spent to set up Inmos, we wish it all
success. lacess.

Raising standards

For a quarter of a century eading recording oudspeaker engineers have used the Quad electrostatic loudspeaker as a standard of reference. Its influence on the quality of reproduction which we have come to expect has bee

The introduction of its successor, the Quad
is an event of great
significance, destined to se he standards for the future It is no coincidence that the first customers for the Quad ESL-63 have been recording and broadcasting engineers and loudspeake manufacturers.

The Quad
ESL-63 at Harrogate

The Quad ESL-63 will be on demonstration at the Festival of Sound August 5th-18th in the Duchy Room-Cairn Hotel.
Complimentary tickets for demonstrations may be obtained in advance HARROGATE by writing
to or elephoning The Acoustical Co. Ltd, statin day and time preferred
Demonstrations will be held every twenty minutes from 11.00 a.m. to 7.40 p.m. on Saturday 15th and Sunday 16th August and at the sam
times on Friday the 14th.

Please note that the xhibition is not open on Friday the 14 th, but by organisers we are opening day early to give members of the public an an public to listen to listen to the Quad M min comparative 4 tranquility. The Acoustical Manufacturing Huntingdon, Huntingdon,
Cambs., PE18 7DB Telephone: (0480) 52561

RADIO AND TELEVISION SERVICING 1980-81 MODELS

Editor

R N Wainwright, T.Eng. (CEI), F.S.E.R.T.
The latest volume in the Radio and Television
Servicing series-

- Quick reference to hundreds of models (Colour and Monochrome), Radio - (Portables Clock Radios, Cassettes, In-car, Unit Audio, Record Players)
- Latest design techniques described
- Receiver adjustment and alignment Receiver makes covered in Radio and Television Servicing.
$1980-81$ Models: 1980-81 Models:
Television Receivers (Colour and Monochrome) Alba, Bush,
Crown, Decca, Dynatron Ferguson Crown, Decca, Dynatron, Ferguson, G.E.C., Grundig, Hitachi,
I.T., J.V.C. Murphy, National Sanyo, Sony, T.C.E., Toshiba, Ulltra, Vega, Waltham. Radio Receivers (Tape Recorders, Record play. Binatone, Bush, Crown, Ferguson, Fidelity, Hacker Sound, Hitachi,
J.V.C. Murohy, Philips, Pye, Roberts J.V.C., Murphy, Philips, Pye, Roberts Radio, Sanyo, Sharp, Sony,
Ulltra, Vega, Waltham.

An essential reference book for all service
An essential reference book for
engineers. $£ 17.50 \quad 13$ August
Previous volumes available are as follows:
$1968-69(£ 4.25)$ 1971-72 (£6.00) 1973-74 (£6.50) 1974-75 $(£ 7.00) 1975-76(£ 8.50) 1976-77$ (£9.50) 1977-78(£10.00)
$1978-79$ 1978-79 (£11.50) 1979-80 (£14.50) Enquiries to Sales Dept., Macdonald and Company Publishers Ltd.,
From booksellers, or in case of difficulty, please use the form below

To: The Sales Department, Macdonald and Company Publishers Ltd., 8 Shepherdess Walk, London N1. Please send me.......... copy (ies) of RADIO AND TELEVISION
SERVICING 1980-81 Mod SERVICING 1980-81 Models at $£ 17.50$ per copy (post paid).
I enclose my cheque/PO for $£$ (made payable to Macdonald and Company Publishe... or debit my -
\square Access
\square Diners Club
\square American Express
\square Barclay Card
My card number is
\square Barclay Card Signature
GRO A/C No. $205 / 4221$
Name.
Addres
Address ...
Please allow 28 days for delivery

SEMEL-ABACUS
MICROCOMPUTER Features:
Z-80 4MHz CPU
64 K Memory
Two Serial Ports
Two Parallel Ports S100 System Can Support MP/M

(lb)
Here $V_{\text {dff }}^{2}$ or $I_{\text {df }}^{2}$ is the mean square of the random (noise) voltage or current within bandwidth $\mathrm{d} f, R$ or G the resistance or conductance involved, T the absolute temperature and k Boltzmann's constant. 1 to or current components in a narrow frequency band $\mathrm{d} f$. A fact which is most easly derived by the mathematical technique of contour integration of a complex variable is that the mean-square of the total of all frequencies from zero to infinite frequency) is
$V_{\text {tot }}^{2}=k T / C$

$$
\begin{aligned}
& V_{\text {tot }}^{\text {tot }}=R / L \\
& I_{\text {tot }}=k T / L
\end{aligned}
$$

where C and L are the residual reactive circuit reduces at Biographical details of Professor Bell appeared in the January issue, page 60.
infinite frequency, Formula 2 b was de rived by Brillouin ${ }^{3}$ from a theoretical investigation of the behaviour of conduction electrons in a metal. But radiation resistance arises from the launching of
electromagnetic waves into space, so it electromagnetic waves into space, so it would appear not to have any system of
conduction electrons in random motion conduction electrons in random noise.
which could be the seat of Johnson noise One must therefore back-track to the origin of the idea of Brownian motion and follow a fresh track that leads eventually to Nyquist's derivation ${ }^{4}$ of equations 1 ,
which is independent of the internal mechanism of the resistance. The botanist Brown observed through a microscope that pollen grains suspended in water were in continual random motion. At the time there was controversy as to whether this
was due to the pollen being alive, but we was due to the pilen being alive, but we
know now that it was not - given a sufficiently high power microscope the same effect occurs with a dilute suspension of Indian ink in water - rather it was due to collisions between the
the molecules of water
The molecules of water.
To take a simple case, suppose a quantity of mercury vapour is mixed with lighter gas, such as the nitrogen and oxygen of air. At equilibrium, how will the energy of the heavy molecules of mercury
compare with that of the lighter molecules compare with that of the lighter molecules
of gas? The answer given by statistical mechanics is that it will be the same, and that every object of whatever mass or nature will have an average energy (in ther mal equilibrium) of $1 / 2 k T$ per degree of
freedom${ }^{\star}$. This rule is equally true of gas molecules, suspended particles, larger mechanical systems and electric circuits. As an example of a large mechanical system Kappler ${ }^{5}$ made a torsion pendulum by suspending a small slip of silvered glass
on a quartz fibre. The angular movement of this mirror corresponded to a mean energy $k T$ and could be explained by the unequal random bombardment with air * In case the concept of "degree of freedom" causes difficulty, the number of degress is equal to the number of co-ordinates which must be
specified to define the motion of the object or specified to define the motion of the object or
system. A spherically symmetrical body - the idealized monatomic gas molecule - has
three degrees of freedom corresponding to the three degrees of freedom corresponding to the
x, y and z components of motion. An harmonic x, y and z components of motion. An harmonic
oscillator has two degrees of freedom corresponding to the amplitude of oscillation and the
speed with which it passes through the point of speed with which it passes through the point of
zero displacement, or to the voltage and current in an electrical resonant circuit.
molecules of different parts of its surface So would the effect be eliminated by suspending the mirror in a vacuum? Reducing
the pressure to 4×10^{-3} atmosphere althe pressure to 4×10^{-3} atmosphere
tered the waveform (because the reduce damping led to sharper resonance) but did not alter the total energy. If the system not alter the total energy. If ere perfectly evacuated, the mirror could still receive thermal energy via its suspen sion, or in the last resort by radiatio pressure on it. The point of this last suggestion is that as long as a system is obser-
vable it must by definition be able to exchange energy in some form with its surroundings.
Then at the beginning of the century Lord Rayleigh ${ }^{6}$ suggested in connection with black-body radiation that a box full of radiation would have a number of degree
of freedom equal to the number of modes of freedom equal to the number of modes
of standing wave which could be established in it. (This led to prediction of the "ultra-violet catastrophe" and to the introduction of quantum theory.) In due course Nyquist adopted the similar idea that the number of degrees of freedom of a trans-
mission line was determined by the number of standing-wave modes which it will support, and matching the characteristic impedance of the line to a resistive termination then leads to equations 1. A slightly modified version of Nyquist's deri-
vation is given in Appendix 1. The important point is that as this only depends on matching R to the Z_{0} of the transmissio line, anything which behaves circuit-wise as a resistance will satisfy the equation regardless of its internal mechanism.
Thinking of a receiving aerial, from Tuist it need only appear circuit-wise to have a resistance, e.g. as seen from im pedance measurements at its feeder term nals. Secondly from general equipartition will depend on its exchange of energy with the outside universe. For example, if the aerial of a satellite ground station pointed at an empty region of space (empty meaning a region which does not contain perature of the radiation resistance will be very low; but if it is pointed very near the horizon its temperature will be approximately that of the earth's surface or atmosphere. (At lower frequencies it is customfrom thunderstorms etc. by attributing a higher equivalent temperature to the radiahigher equivale
tion resistance.)

Absorption of power
For the radiation resistance of a transmitting aerial one can use the alternative defi-
nition: that element of a circuit which absorbs power. It is then said that if r.m.s. current i flows in an aerial of radiation resistance R_{r} to radiate power W, then
$i^{2} R_{\mathrm{r}}=W$. There are then two methods of $i^{2} R_{\mathrm{r}}=W$. There are then two methods of aerial is known.
The first, the Poynting vector method, is to calculate the field from a given current and hence the power density at all
points on a sphere surrounding the aerial, and so by integration of the power density over the surface of the sphere to find the otal power radiated. The mathematics is edious, but radiation resistance is usually proportional to the square of h / λ where h is wavelength: for a straight wire with $h \ll \lambda$ $R_{\mathrm{r}}=80 \pi^{2}(h / \lambda)^{2}$.
The second method is to calculate the in-phase e.m.f. which is induced in all parts of the aerial by its own current. In many practical cases this also involves macan provide a simple example which gives some insight into the reason for R_{r} depending on the ratio of size of aerial to wavelength. In the figure a current $i=i_{0}$.
$\sin (2 \pi c \lambda) t$ is supposed to circulate round the loop, having the same phase at all points. The magnetic field adjacent to $\mathrm{d} l^{\prime}$ but due to the current in $\mathrm{d} l$ will be delayed by the time taken for it to travel between the two points and so will be slightly out of
phase with the current in d l^{\prime}. If there were no delay the e.m.f. induced in $\mathrm{d} l^{\prime}$, proportional to the rate of change of magnetic field, would be exactly in quadrature with cribed as inductive; effect would be desan in-phase component, which results in power dissipation and so is resistive. That is why all aerial systems have a radiation resistance which is a function of the ratio of aerial size to wavelength. \dagger The mathematical evaluation for the circular loop
leads to $R_{\mathrm{r}}=20 \pi^{2}(2 \pi a / \lambda)^{4}$, Appendix 2 . The radiation resistance of an aerial is of course, the same for both transmission and reception. It satisfies both the essential criteria of a "real" resistance, namely that it is the seat of Johnson noise and it ab-
sorbs power. Radiation resistance is therefore a real resistance in the same way, for example, as the high-frequency loss resistance of an air-cored inductor (largely due to eddy currents) or the loss resistance like radiation resistance, vary with frequency. Resistance is a circuit concept
\dagger The constancy of phase of the current around the loop might be questioned, but it is no
essential. If the magnetic field at d ${ }^{\prime}$ is than the current at d^{\prime}, because of the time taken for current to travel round the loop be-
tween the two points, then conversely the tween the two points, then conversely the mag.
netic field at dl due to current in l l' will be still further behind the current at dl l; and provided the effects are small, which follows from postulating that $a \ll 190$, the overall effect will be the
same as though the current were in constant same as
phase.
which can be applied to anything which satisfies the two criteria of fluctuation and
dissipation.

References 1. H. A. Lor

Leipzig), 1916 , Thenty of Electrons, Teubner 2. C. J. Bakker \& G. Heller, Brownian motion
in electric resistances, 3. L. Brillouin, Fluctuations dans u. 262. 3. L. Brillouin, Fluctuations dans un conduc-
teur, Helvetica Physsica Acta, vol. 71934 tur, Helveitica Phy
supplement), p. 47 .
4. H. Nyquist, Thermal agitation of electric
charge in conductors, Physical Review, vol 32 charge in cond
1928, p. 110 .
5. . Kappler
5. E. Kappler, Avogadro's number from Brow-
198, p. nian movement in a torsional pendulum (in Ger-
man), Annalen der Physik, vol. 11 1931 man), Annalen der Physik, vol. 11 1931, p. 233.
6. Lord Rayleigh, Remarks upon the law of complete radiation, Philosophical Magazine, vol. 49, 1900, p. 539.

Appendix

Figure (a) represents a loss-free transmissio Figure (a) represents a loss-free transmissio
line of finite length l, open-circuited at its end
This will Wavelength such that l is an integral multiple wavelength such that l is an integral multiple
$N / 2$ and the number of such within a narro requency band $\mathrm{d} f$ is $2 l \mathrm{l} f / c$ where c is the veloc y of propagation. Each standing wave, like and thereforere mean thermal energy $k T$. Th energy per unit length of line is then $2 k T d f / c$.
This is the resultant of two travelling wave This in the resultant of two travelling wave propagation c and therefore carrying powe propagation c and therefore carrying power
$k T d f$ each. Now let the line be extended to infinite length, but cut at the position of th observer and the right-hand part replaced by
resistor R matched to the characteristic im pedance Z_{0} of the line. Because the terminatio is matched, conditions in the remaining half of
the transmission line are unchanged. Therefor power $k T \mathrm{~d} f$ will flow along the transmission line into R and equal power must flow from R into he line. As indicated in figure (c) this can be represented by combining with a noise-free re-
sistor or conductor a voltage or current genera-

(a)

(b)

(c)

Nyquist's formula for Johnson (thermal) noise is deduced from consideration of standing waves on a transmission line.

Method of calculating radiation resistanc or simple circular loop aerial assumes elements dl and dl' is calculated and then extended to the whole periphery by
integration in Appendix 2 .

tor having the respective values

This treatment departs slightly from Nyquist's original derivation.

Appendix 2: Radiation resistance

 of small circular loopThe e.m.f. induced in an element dl will be at that point according to
$-e=-\mathbf{E} \cdot \mathrm{dl}=(\mathrm{d} \mathbf{A} / \mathrm{dt}) \cdot \mathrm{dl} \quad(\mathrm{Al})$ where a negative sign has been added on the left because the e.m.f. is opposed to the current. Bold-face type is used for vectors and \oint means
"integral around the circle") If the current in "integral around the circle".) If the current
the loop is $i=i_{0}$ exp $j \omega t$ equation Al leads to
$e=j \omega i_{0} \operatorname{expj} \omega t(\omega / 4 \pi) \oint \int \frac{\exp (-j \omega r / v)}{r} \mathrm{dl} \cdot \mathrm{d}^{\prime}$
here the double integration around the loo arises as follows. First find the e.m.f. in di' due to current in dl and integrate dl' round the circl
to find the total e.m.f. due to current in dl; and then integrate dl round the circle to find the otal effect for the whole of the current. The part of e which is in phase with the current is the
ceal part of equation A2, but because of the eal part of equation A2, but because of th
nitial j this comes from the imaginary part o he integrand, replacing exp $(-j \omega r / v)$ by
$-\sin (-\omega r / v)$. - sin ($-\omega r /(/)$. Now expand the sine as a series
of powers of worlv and discard the first power of powers of $\omega r v$ and discard the first powe
because division by r will make it constant and
$\phi \phi$ d $\phi \varnothing$ dil.dI' $\equiv 0$. The cubic term is then the leadin
term and

$$
\begin{equation*}
R_{\mathrm{r}}=e=i=\frac{\mu}{4 \pi} \iint \frac{\mathrm{e}^{4} \mathrm{r}^{2}}{3!v^{3}} \mathrm{dl} \cdot \mathrm{dl} l^{\prime} \tag{A3}
\end{equation*}
$$

Now from the geometry shown above Substituting these exprescions and $r=2 a \sin \phi / 2$.
$R_{\mathrm{r}}=\frac{\mu}{4 \pi} \frac{\omega^{4}}{3!v^{3}} \int_{1=0}^{2 \pi a} \int_{\phi=0}^{2 \pi} 4 a^{3} \sin ^{2}(\phi / 2) \cos \phi \mathrm{d} / \mathrm{d} \phi$ (A4)
Remembering that $\omega / v=2 \pi / \lambda$ and μv is "the intrinsic impedance of free space" which equal
120π,
$R_{\mathrm{r}}=20 \pi^{2}$ equation

Correlator for angles

the the coincidence of pulses representing angles of rotation, gives
the instantaneous cross-correlation between a selected and a measure angle and also its frequency of occurrence. It can be used for checking timing scatter in automobile
ignition systems, but is also suitable for converting a continuous electronically scanned omnidirectional surveillance radar civer into a with a variable scanning rate.

Engineers may wish to compare the perEngineers may wish to compare the per under laboratory and field conditions in order to select the best system. This might be done, for example, before applying performance and efficiency under variable load and environmental conditions while minimizing exhaust emissions. Doubts have been expressed about the reliability and consistency of spark ignition at some specified angle of advance aspread in the ignition time, particularly when using the conventional mechanical ignition system. The elimination of spring-operated poin contacts, with their inherent contac bounce, high erosion rate, variation of
dwell time with speed and other characteristics of the cam-operated mechanical
switch, including backlash, friction and wear, should reduce the probability of spread in the ignition time. A high degree of consistency in ignition time can therefore be expected from electronic ignition systems not
Because of the statistical nature of the problem, a measure of the spark scatter about a modal value can be obtained by cross-correlating the firing angle with a selected angle (i.e. summing the product
of their instantaneous values with time) to produce an angular frequency distribution. This could be defined in terms of the standard deviation, if a theoretical distri bution can be determined from the meahaving the greatest frequency at the nominal, or modal, angle will have the smallest standard deviation or spread, determined by counting (or integrating) the cross-correlator output over a rangetin the most suitable ignition system on this basis, the type of distribution associated with it could be determined, to give a suitable performance criterion.
Cross-correlation
The principle of the correlator used in this nputs $j(t)$ and $i(t)$ are applied to a coincidence circuit or AND gate, whose outpu $K(t)$, a function of their product, is the
summed over a time T. A continuous train of such outputs may be formally stated as:

$$
R_{i j}(\tau)=\operatorname{limit}_{T \rightarrow \infty} \frac{1}{T_{1}} \int_{0}^{T} j(t) i(t+\tau) \mathrm{d} t
$$

a cross-correlation function. τ is an arb trary time delay between the two inputs, which for reasonable co-incidence, may considered to be zero.
If $j(t)$ and $i(t)$ are known and unknown inputs corresponding respectively to
selected three-digit encoder output and test pulse (e.g. an internal combustion en gine spark ignition pulse at a preset or required angle of advance) the output K or $R_{i j}(0)$ after summing (counting or inte quency of $i(t)$ when coincidence is perfect This process of cross-correlation is effected in Fig. 1 by the two-input NAND gat with waveforms (j) and (i) in Fig 2 applied to it. After inversion, its output (K) measure of the frequency of the ignitio trigger or test pulse (i).

The digital correlator

In Fig. 1, a train of 360 equally-spaced
Fig. 1. Schematic of a cross-correlator channel. Waveforms at the reference points (a), (b), (c) etc. are shown in Fig. 2.

of speed, is applied to a 9-stage counter used as a comparator for a 9-bit binary
word. Corresponding collectors of each word. Corresponding collectors of each omparator stage are simultaneously apNAND and NOR gates in parallel. The second inputs of these accept from an encoder one of nine bits defining the selected word or ignition angle. When the compartor input pulse corresponding to the reaneous coincidence at each of the nine parallel two-input gates, each NOR gate output is inverted before enabling its parallel NAND gate output at a second Reforence.
hows that whether coincidence is positive or zero, this second gate is inhibited with a positive output using t.t.1. circuits for po sitive logic; in the absence of parallel At coincidence, its output is zero. tive channel outputs are applied simultaneously to three three-input NAND gates whose outputs are inverted and applied to a single three-input NAND gate Its output inhibits the comparator input
pulse train and, when inverted, simultaneously enables a two-input NAND gate to which is applied the trigger pulse of the
ignition system being tested. At coinciBy cross-correlation
By counting these angular outputs, the average cross-correlation is obtained, that
is, the angular frequency. If coincidence occurs within the 1° resolution, correlation will be complete. Any spread in either the instant of triggering or, alternatively, of gap-breakdown exceeding 1°, will reduce quency from its maximum value the fregree of correlation or frequency of the correlator output at constant speed is herefore a measure of the efficiency of the spark ignition system under test over a revolution at a selected ignition angle of dvance.
Although the output frequency defines the cross-correlation between the selected and measured angle of advance, if the latcorrelator output, after inversion, could enable another two-input NAND gate to which is applied the spark-gap breakdown pulse, thereby simultaneously cross-correlating the ignition system trigger and gap-
breakdown pulses with the selected angle. Provision is actually made for this in the correlator. The angular resolution is deter-
mined by the number of slots on an inpu chopping disc and is halved by using a zero crossing detector; for a a 1° resolution, only 180 disc. The inhibit pulse cannot be used to reset the comparator, because in doing so, the comparator input will no longer be in hibited and counting will again begin immediately. The comparator must remain
inhibited at the selected angle of ignition until a reference pulse resets it with monostable τ_{3} in Fig. 3; the comparator reset pulse must be negative relative to the positive supply potential.
Since the comparator will begin counting pulses immediately the chopping
disc begins to rotate, with only those input pulses following the reference pulse being significant, it will be necessary to inhibit any input pulses preceding it. In the
system diagram of Fig, 3 , the correlator system diagram of Fig. 3, the correlator
input pulses from a zero-crossing detector are applied to a positive NAND gate (preceding the comparator input) which may or may not be inhibited by the bistable output Q . If Q enables the NAND
gate, its output after inversion is simultaneously applied to the comparator and a 360 -pulse counter, whose output using monostable τ_{2} is applied to an Exclusive$O R$ circuit which will reset Q to \bar{Q} and inhibit the positive NAND gate if 360
pulses are applied to it. Had this gate been initially inhibited, there would be no counter output to enable it with the ExclusiveOR and bistable circuits.
When a reference pulse from the chopping disc, using monostable τ_{1}, is applied
to the Exclusive-OR input in the absence of a coincident counter output, it will trigger the bistable (on the trailing edge) and enable the NAND gate, if initially inhibited. Simultaneously the reference pulse, coincident with the 360 th input
pulse from the zero-crossing detector, reset the counter and comparator with a lowpass delay filter and monostable τ_{3} before he next or first pulse of the sequence is ppecautionary measure since it resters is a atecautionary measure since it resets isself pulse, the counter output is coincident with and inhibits the reference pulse at the Exclusive-OR input, with the input If the reference pulse initially inh.ibits If the reference pulse initially inhibits complete revolution of the chopping disc will occur before this gate is enabled and the sequence begins. A maximum of less revolution of and the chopping disc will therefore be necessary for periodic selection of the required ignition angle of advance: if 360 pulses are counted after ne revolution, selection will have alread The $9 \times$ input angular position switches from 310°

WIRELESS WORLD AUGUST 1981

to 350° with $1.8 \mathrm{k} \Omega$ resistors connected across the +5 V supply to ground at each of the nine encoder outputs. Each output is applied to an inverting buffer whose outthe nine parallel two-input NAND and NOR gates connected to the comparato collectors in Fig. 1.
The correlator operating waveforms are shown in Fig. 3. Waveform (h) is the out-
put of the single three-input NAND gate used for inhibiting the comparator input of Fig. 2 and, when inverted, for gating the ignition trigger or plug gap-breakdow pulse in Fig. 1. Its pual shifting to the lef or right with the angular switch positions, and occurs at the instant the measured and selected angles are coincident. The leading edge occurs at reset, that is, at the leadin edge of (e) inverted.
Ocating a light source and detector at th 157th slot; an output is obtained when the reference aperture below the 180th slo passes through this position. This test pulse is amplified and gated by (h), input NAND gate whose inverted outpu (k) is applied to the final two-input NAND gate of the correlator, enabled by (1) provide a direct measure of the disc speed set (or preset) terminal of a J-K masterslave SN7472N flip-flop and (f) to its rese or clear) terminal, a bistable output (1) ${ }^{1}$ wide and independent of speed is availab for strobing the final NAND gate of th correlator. This permits the frequen the 1° angular resolution of the correlator instead of obtaining a cumulative distribution having a point of inflexion difficult to dermine if (k) is gated by (j)

nput pulse generation

As the method of measurement depends on the amplitude of a pulse train the correation between laboratory and field measurements should be good and independent of the respective prime movers for a onstant angular resolution. The ignitionpendent of angular velocity perturbations, particularly when using different distributors and an encoder reference. The distri-

Fig. 3. Reference circuit for cross-correlator. See Fig. 2 for waveforms indicated by letter
Fig. 3. Refe
symbols.

Fig. 4. Velodyne speed control system.
 ecause of velocity perturbations; their effectiveness should vary inversely with angular resolution. Variations in dwell and ignition timing through spring inertia and ontact bounce, heel wear, points erosion comparable with the timing over 1° at speeds approaching 3000 r.p.m., without being aggravated by velocity perturbaions, which also affect the kinetic ener of the system.

To meet this requirement for constant speed, an electro-mechanical or velodyne speed control system, in which speed of input voltage by feedback methods, was used with a conventional six-way distributor and 7 -in diameter, 180 slot, 0.25 -in thick steel chopping disc coupled directly oo the velodyne s

WIRELESS WORLD AUGUST 1981 speed control system of Fig. 4 may be
negligible, its response will be highly oscil latory, which is definitely unacceptable fo this application, so the damping must be artifically increased. Both smoothed and with proportional and integral control, have been considered. An analysis of the former gives a velocity error of approxi mpately modified Type 73 AP1 1084 velodyne with
control amplifier gain $G=306 \mathrm{~mA} / \mathrm{V}$. is, with a constant input, an output shaf deflection exceeding 3.6 radians/s will overload the amplifier.
Velocity error or lag can be completely eliminated by the introduction of a term
proportional to the integral of the error, in the system differential equation. A circuit suitable for use with the two-lag system of Fig. 5, and providing a control amplifier input proportional to the error and its integral, is given in Fig. 6. (he component
values of this have been derived in an appendix which can be obtained by sending a large s.a.e. to Wireless World's editorial office). In the steady state, the velocity error has been completely eliminated is that input perturbations, or interference of duration short compared with this re sponse time, will not affect the contro system. In detemining the step response the inertia of the distributor and chopping
disc load were neglected and, provided the control amplifier gain G is sufficiently high, these should be of no consequence It can be shown that the peak overload velocity overshoot is only r.p.m.; with $29^{\circ} / \mathrm{sec}$ relative to the input will overload the control amplifier
The stability of the velodyne speed control system of Fig. 4, with proportiona and integral control, is assured by the rasponse, which has a value of 0.64 , given by $\delta=\psi \pi / \sqrt{ } 1-\psi^{2}$, where the damping facto
$\psi=0.2$.
Alternative gating
The parallel NOR and NAND circuits of Fig. 1, in each correlator channel, can be gated directly by the trigger pulse of the ignition system under test, thereby elimi-
nating the encoder. By inhibiting the comparator input as before and decoding the 9 bit word stored in it, the angle of advance using either a visual or tape read-out will be nown. However, an encoder provides ity without an ignition trigger pulse; it is thus able to synthesize a trigger pulse as otherwise.
Comparison of ignition systems
Fig. 7 shows some results from using the cross-correlation technique to test and
compare different ignition systems. are the results from an opto-electronic triggered capacitor-discharge system with variable spark duration; at (b) from a typical contact-operated c-d system; and at
ystem. In the graphs the positions of the raph lines along the "angle of advance" 1° intervals spreads of ignition timing (at fereng of angle of advance) at dif bunches of lines can be regarded as spec tra. The length of each graph line shows on the "frequency" scale, the frequency or number of occurrences in the test interval, of firing (spark plug gap-breakdown) at The frequency spe
has an angular spread exceeding 10° at the highest speeds; the system (a) distributo with its light-chopper could reduce or eli minate these angular distributions. The tion in modal value with speed: the in creased scatter with speed is due to distributor contact bounce and inertia as well as spring inertia. The use of a $22 \mathrm{k} \Omega$ suppres sor resistor in system (b) could contribute values at the lower speeds because of a larger breakdown current.
In a four-cylinder engine, such high distributor speeds as are used for checkin the correlator are unlikely, and for engin of system (c) a standard 12 V inductive ignition system, is superior to that of system (b) which is more complex. If th current switch was optically rather tha mechanically triggered to eliminate th point contacts, is performance should and impracticable. While the use of long or short pulses seem irrelevant here, thei effect on engine performance is most im portan, a is, adequate system bandwidth
7 (a) for 100% correlation establishes the accuracy and reliability of the cross-corre lator within its 1° resolution. It could b tested without a synhesized trigger puls 5 V supply and gating the nine respective comparator outputs at any selected angle within the encoder's range. However, an external pulse source checks the pulse amplifier and the correlator's stability or ability to respond to a test pulse at the set spurious pulses over a realistic speed range. The results are confirmed by the uniform correlator angular output of Fig. (b) over a 9:1 speed range generated by even though the absolute angular values measured change in accordance with Fig. 7(a).
As the correlator's performance is independent of the prime mover, any discresurements can only be due to prime move velocity perturbations, caused by wear and backlash in the mechanical transmission from the engine to the distributor, to of the spring-loaded point contacts, aggravated by the kinetic energy of the advance and retard mechanism.
A quick method of selecting an ignition system is inition the voltage proportiona
breakdown current, i.e. the ignition scatter, to a two-input NAND gate enabled by
the zero-crossing detector. The NAND the zero-crossing detector. The NAND
gate output, after inversion, will consist of a train of discrete equally-spaced positive pulses at the gating repetition rate, having the same.envelope as the scattered ignition input, i.e. a discrete spectral distribution
of the ignition energy per revolution. By of the ignition energy per revolution. By
integrating this discrete spectrum to give a integrating this discrete spectrum to give
continuous distribution envelope or sampling and holding it with a box-car circuit to give a discontinuous distribution enve-
lope with time, it may be applied to a c.r.o. lope with time, it may be applied to a c.r.o.
triggered by the chopping disc reference triggered by the chopping disc refere, for
pulse. It may then be photographed, for example after one minute, for comparison with other ignition system energy distributions. Unfortunately this method does not
provide angular information or permit the provide angular information or permit the
measurement of the distributor spark-admeasurement of the distributor spark-ad-
vance characteristic. However, the standard deviation by inspection of the distribution envelope will immediately indicate the best ignition system at one particular
speed, repeating the comparison if necesspeed, repeating the comparison if neces-
sary over the whole speed range. This kind sary over the whole speed range. This kind
of selection is an example of the "ensemof selection is an example of the "ensem-
ble" method of averaging while that using a cross-correlator is one of "time" averaging. In system (a) the statistical processes
are stationary since from Fig. 7(a) the freare stationary since from Fig. 7 (a) the frequencies at a given speed are the same.
Finally, although the correlator has been designed for selecting an ignition system by measuring the standard deviation of its angular distribution at a given speed, it would be a useful addition to a radar receiver for determining precisely the
bearing of a return pulse. It would be particularly suitable for use in a withinpulse scanning system ${ }^{4,5}$, with its fixed modulation or scanning frequency. By squaring the sinusoidal modulation waveform and dividing it electronically into
equal parts, depending on the angular resolution required, the chopping-disc and velocity-control loop will be eliminated. Using a synchronized omnidirectional encoder with the same resolution, attention
can be focused on a stationary return pulse can be focused on a stacionary return puls
from any known direction exceeding the threshold level. The encoder effectively converts the continuous electronicallyscanned omnidirectional surveillance radar
receiver into one with a varible sanna receiver into one with a variable scanning
rate, since it could be switched sequenrate, since it could be switched sequen-
tially manually or electronically in either direction at any frequency.
References

1. Williams, F
References - Williams, F. C. \& Uttley, A. M. "The Velo dyne,
2.
3. Hardie, A M -
4. Hardie, A. M. "The Elements of Feedback
and Control", Chapter 2, pp. 46-48, Oxford University Press, 1964 .
5. Teasal, C., Miller R. D.; and Robson, J. V Bens"" "Ignition Systems and Spark Plug Requirements". Proc.I. Mech.E. (Automobile Divi-
sion), $1967-68$, Vol. 182, Pt. 2A, 24 and pp. $25-41$.
6. Davies, D. E. N. "Beam positioning Radar Systems utilising Continuous Scanning Techniques".
7.
8. Spencer, T. "The Electronically-scanned Circular Array. I.E.E. Conference Proceedings on

How's that again?

"... to inform a wide general public
about the superordinate relationships about the superordinate relationships of
new technologies. It is . . a matter of showing trends and tendencies, of creating transparency and of promoting understanding for a life with controlled electron. ics by means of relevant information.' (Ineltec 81 press handout). Fowler; it's all about telling Joe Public that electronics is wonderful. There's this big Swiss electronics exhibition in Basle whose purpose, aside from a "mediator function
between manufacturer and user" (selling between manufacturer and user", selling
gear), is to "eliminate the layman's fear of excessive mental demands, to help him throw a bridge to (at?) the new technologies." Simple, really
If it's all going to be like that, though, end should be sent - they have no fear of excessive mental demands.

Yaiplecc Yopld

Near enough, anyway. That, in case you what you ask for when you go to a bookstall in Russia to pick up the latest Wireless World. It isn't a translation, just a transliteration (Ooairless Ooorld, What happens
is that the Russians buy a few copies from us, copy and reprint them with the above on the cover, and send them out. I don't know how many they print, but it must be quite a lot, or it wouldn't be worthwhile - the drawings are all right, but the pictures come out looking a bit wan. And it's all in black and white, so that Paul Brierley's colour photos on the cover suffer direly.
What
What puzzles me is why we don't reU.S.S.R. They're pretty bright people over there - brighter than most in many ways - but I can only remember two contributors in the last decade or so. It would be good to hear a bit more about what goes
on in their electronics - they can't spend all their time orienteering, although they do seem extraordinarily keen on it, judging by their magazine Radio.

Long-felt want

It begins to look as though I'll have to acquire a computer of some sort, even if it's only to guard against abuse from the
younger element here. Three of them have got them now and their conversation has taken a turn towards the grotesque already: it is not easy to maintain my front of omniscience when alt around people are
acorns, apples and various other intelligent
vegetables.
I still have to solve the problem of what I'm going to do with it when I've got it, but that isn't the vital thing. What is important is that I must put on a bit of a spurt to catch up with the language, at least. It's
moving so fast now: one hardly dares speak in case one is unwittingly guilty of a computerspeak solecism. If Shakespeare were writing today, he wouldn't dare make a character say "Goto, ... in case it was scene. It's even got to the stage now where when I mention the world 'program,' they all think I'm talking about Radio 4, not being able to credit that I've heard about computers yet.
will have to wot myself a computer, it whole, I really think I'd like to use it as a word-processor - I can probably live without a list of all the prime numbers up to several million, and I know the state of
my bank account because the manager keeps writing bitter little notes to tell me. No, I think a word-processor might well be a great help: the typewriter I use makes a lot of mistakes and I get so fed up of bother and they get printed. When I do scribble all over the typescript the printers can't read my writing anyway, so mistakes still appear.
All this, so I'm told, will not be a problem with a w.-p. All you do is type the leaps into position, mistakes corrected, paragraphs re-ordered on demand and the right-hand edge straight as a die. Another keystroke and the printer fires it all off at some unbelievable speed, ready for
sending off to the printers. Yes, I think hat's for me. It might even do the index every year, so you'll be able to have it before the end of the succeeding year

Breaker breaking

peacefully already. There I was, driving Cheam, when a disembodied voice rudely interrupted Frederika von Stade, who was singing a Canteloube song from the Auvergne, to announce that if any breaker so
desired, he was ready to hold converse with them. I think that's what he said, at any rate - I can't claim absolute certainty on this point, because the request was of South London whine and Texas drawl that it might have been anything.
I wasn't able to hear the replies (I suppose he was breaking into the front end because of his proximity) and, in any case,
I was trying to listen to Miss F. von S.
singing her television commercial, but he must have received a reply from someone talk, since he suddenly went all posh, and began to say things I could understand. It was at this point I realised that the c.b.
freak was in the car behind, referring to freak was in the car behind, referring to
this old creep in front of him who was driving too slowly. The impudence of the fellow! I was in progress at the maximum speed at which I feel safe - nearly 25 m.p.h., fast enough for anyone It wasn't the reflection on the verve and
dash of my driving that hurt dash of my driving that hurt, though, nor
the slighting reference to my noble vehicle as a heap, but the fact that the car behind him was a police car, full to the brim with impassive Woodentops who didn't take the
slightest bit of interest in this verba slightest bit of interest in this verbal as-
sault on me. I suppose they must have had a radio and been as vulnerable to interference as I was, but they didn't turn a hair. All the same, I bet if I'd put my foot down and gone past $32 \mathrm{~m} . \mathrm{p} . \mathrm{h}$., they'd have had
me. me.

Little boxes

People keep telling me that the audio
boom is coming to boom is coming to an end. I dare say it seen much indication of it myself. The magazines which concern themselves with audio are still with us and I haven't noticed any diminution in the number of impres-sive-looking boxes with knobs on in the shop windows.
But if the ex
is fading to a thin shriek I and the boom is fading to a thin shriek, I can't say I'm
surprised. The public can be taken for a ride by anyone with enough nerve, but not for ever. There is in most of us a hankering is impressed on us that the row of l.e.ds on the new cassette deck is so much better than the meters on the old one that the expenditure of a wad of fivers is as nothing compared to the enhanced quality of music
we can now enjoy, we fall for it - for a we can now enjo
time, at any rate.
Comes the time, though, when a chap begins to wonder. How can it be, he (or she) will muse, that the new amplifier doesn't sound any different to the old one,
even though it cost twice as much and has a pair of meters. Meters? If the thing sounds as though it's overloading, you turn the wick down, and if it doesn't, you don't. Who needs meters?
The truth is that manufacturers have mickry for years, and if the time has come to cool it, they ought not to grumble. Maybe they could start on video machines next - there's a fortune to be made there.

TRANSISTORS

 은․․ .

 -

DIODES

LOW PROFILE D.I.L. SOCKETS 8 PIN 14 PIN 16 PIN 18 PIN 20 PIN 22 PIN 28 PIN 40 PIN				1.60 1.10 1.10 0.100 1.700 0.50 0.50 0.70 0.700 0.90 0.90 0.60 0.60 0.60 0.50 0.90	C.s LIN TBA530 TBA530Q TBA540 TBA540Q TBA550 TBA550Q YBA560Q TBA750AQ TBA800 TBA810S TBA810A TBA820	IEAR 0.90 0.90 0.90 0.90 1.20 1.20 1.20 1.00 1.70 0.90 1.00 1.00 1.00				$\begin{aligned} & 2.50 \\ & 1.50 \\ & 1.50 \\ & 2.400 \\ & 2.50 \\ & 2.500 \\ & 2.000 \\ & 1.200 \\ & 2.90 \\ & 2.90 \\ & 2.90 \end{aligned}$	ICs DIGIT \square	
AC SPEED CONTROL MODULE FOR HOOVER WASHING/MC	MAINS TRANSFORMERS 0.9V 3 AMPS $\quad £ 4.00$ ea							EAGLE TD83TAPEDEMAGNETISER				
DC SPEED CONTROL MODULE FOR HOOVER WASHING/MC $£ 11.00$	$\underset{\text { 2VV-30V }}{\text { BZY88 SERIES }}{ }_{0.06}$							BZX61 SERIES ${ }_{\text {E0.13 }}$				
		SPEED ADJUSTMENT						BSR P170 SEMI-AUTOMATIC $\underset{\substack{\text { SINGLE PLAY DECK } \\ £ 12.00}}{ }$				
TRANSISTOR DATA EQUIVALENT BOOKS TVT 80/81 $\underset{\substack{ \\£ 8.00}}{ }$								STANTON 500 EE CARTRIDGE				
		10 AMP MAINS FUSES						EAGLE TEST LEADS $\underset{\text { f2.00 }}{ }$ TL60				

h.E. LTD., ELECTRON HOUSE, CRAY AVENUE, ST. MARY CRAY, ORPINGTON, KEN

WIRELESS WORLD AUGUST 1981

RADIO COMPONENT SPECIALISTS

1.L.P. Amplifiers now come e three basic types, each of which is available with

 brilliant new range of $1 . L . \operatorname{LiP}$. functional modules to choose from you now have

BIPOLAR Standard, with heatsinks									Without heatsinks				
мооЕ wum	$\begin{gathered} \begin{array}{c} \text { ourpur } \\ \text { poukr } \\ \text { watus ms } \end{array} \end{gathered}$		$\begin{aligned} & \text { Ontion } \\ & \begin{array}{c} \text { On.0. } \\ \text { soniphint } \\ 4.1 \end{array} \end{aligned}$	supplyvoutage rypmax	$\begin{gathered} \text { size } \\ \mathrm{ma} \end{gathered}$	$\begin{gathered} \boldsymbol{w}_{\text {pms }} \\ \hline \end{gathered}$	PRICE	vat	$\left\lvert\, \begin{aligned} & \text { MODE } \\ & \text { NUMEE } \end{aligned}\right.$	$\begin{gathered} \text { sing } \\ i n m m m \end{gathered}$	$\begin{array}{\|l\|l} \hline \begin{array}{c} \text { wr } \\ \text { gms } \end{array} \\ \hline \end{array}$	PRICE	vat
нүзо	15w4.88	0.015\%	<0.00	$\pm 18 \pm 20$	$76 \times 88 \times 40$	240	¢7.29	11.09					
HY60	30wi4.88	0.015\%	<0.00\%	$\pm 25 \pm 30$	$76 \times 88 \times 40$	240	¢8.33	11.25					
HY120	60w1488	0.01\%	<<i.006\%	$\pm 35 \pm 40$	$120 \times 78 \times 40$	410	£17.48	12.62	HY120P	$120 \times 26 \times 40$	215	115.50	12.33
HY200	120w/4.88	0.01\%	<0.006\%	$\pm 45 \pm 50$	$120 \times 78 \times 50$	515	E21.21	E3.18	нY200P	120026×40	215	E18.46	¢2.77
hY400	240w/48	0.01\%	<0.006\%	$\pm 45 \pm 50$	$120 \times 78 \times 100$	1025	¢31.83	¢4.77	Hy400P	$120 \times 26 \times 70$	375	¢28.33	25

AMPLIFIER
HEAT SINK
HEAVY DUTY with heatsinks Without heatsinks

MOSFET Ultra.Fi, with heatsinks
Without heatsinks

Protection: Able to cope with complex loads, without the need for very special potection circuity fluses will suffice).

POWER SUPPLY UNITS			
model no	FOR USE WITH	PRICE	vat
PSU30			
	$\pm 15 \mathrm{~V}$ combinations of $\mathrm{HY} 6 / 66$ series to		
	a maximum of 100 mA or one $\mathrm{HY67}$	¢4.50.	£0.68
PSU36	1 or 2 HY 30	${ }^{\text {¢ } 8.10}$	$\mathrm{f}_{1} 1.22$
PSU50	1 or 2 HY60	£10.94	f1.64
PSUEO	$1 \times \mathrm{HY} 120 / \mathrm{HY} 120 \mathrm{P} / \mathrm{HD} 120 / \mathrm{HD} 120 \mathrm{P}$	£13.04	£1.96
PSU65	$1 \times$ MOS $120 / 1 \times$ MOS 120 P	£13.32	${ }^{\text {f2. }} \mathbf{0}$
PSU70	1 or 2 HY120/HY1 20P/HD 120/HD 120 P	£15.92	£2.39
PSU75	1 or 2 MOS $120 / \mathrm{MOSOST} 120 \mathrm{P}$	£16.20	${ }^{\text {f2. }} 43$
PSU90	$1 \times \mathrm{HY} 200 / \mathrm{HY} 200 \mathrm{P} / \mathrm{HD} 200 / \mathrm{HD} 200 \mathrm{P}$	£16.20	£2.43
PSU95	$1 \times$ MOS $200 / \mathrm{MOS} 200 \mathrm{P}$	f16.32	£2.45
PSU180	$2 \times \mathrm{HY} 200 / \mathrm{HY} 200 \mathrm{P} / \mathrm{HD} 200 / \mathrm{HD} 2000 \mathrm{P}$ or		
	$1 \times \mathrm{HY} 400 / 1 \times \mathrm{HY} 400 \mathrm{P} / \mathrm{HD} 400 / \mathrm{HO} 400 \mathrm{P}$	£21.34	£3.20
PSU185	- 1 or 2 MOS200/MOS $200 \mathrm{P} / 1 \times$ MOS $400 /$		
	$1 \times$ MOS400P	f21.4	£3.22

FP480

 BRIDGING UNIT FOR DOUBLING POWER

than 0.005\%.
Price: $4.79+72$. V.A.T

ELECTRONICS LTD.

Which modules?

nom and most versatile modular assembly scheme ever for constructors of all ages and experience. Study the list - see how these modules will combine to almost any audio
project you fancy - and remember project you fancy - and remember an.L.P. modules are compatible with each other
they connect easily. Modules HY 6 to HY 13 measure $45 \times 20 \times 40 \mathrm{~mm}$. HY 66 to HY 7 I measure $90 \times 20 \times 40 \mathrm{~mm}$. They are so reliable that all I.L.P. modules carry a 5 year no
quibble guarantee.

MODEL NO.	MODULE
HY6	MONO PREAMP
HY7	MONO MIXER
нY8	Stereo mixer
HY9	STEREO PRE AMP
HY11	MONO MIXER
*HY 12	MONO PREAMP
* HY 13	MONO VUMETER
HY66	STEREO PREAMP
HY67	STEREO HEADPHONE
нY68	STEREO MIXER
HY69	MONO PRE AMP
HY71	DU̇AL STEREO PRE AMP
*HY72	VOICE OPERATED STEREO FADER
*HY73	GUITAR PRE AMP
+HY74	STEREO MIXER
+HY75	StEREO PRE AMP
+HY76	STEREO SWITCH MATRIX
+HY77	Stereo vu METER DRIVER

Ready August - may be ordered now

See also our ad. on page 107
TO ORDER USING OUR
FREEPOST FACILITY
Fill in the coupon as shown, or write details on a separate
sheet of paper, quoting the name and date of this iournal.
.

 sending cash, it must be by registereed post T. To poy
C.O.D. please add 1 to TOTAL value of order. When idering. U.K. customers must include the appropriato
V. A.T. as shown. PAAMENTMAM BE MADE BY.ACCESS OR
BARCLAYCARD IF REQURED. ww - 021 FOR FURTHER details

DESCRIPTION/FACILITIES	CURRENT REQUIRED	PRICE	VAT
Mic/Mag. Cartridge/Tuner/Tape/ Aux + Volume/Bass/Treble	10 mA	£6.44	£0.97
To mix eight signals into one	10 mA	f5.15	¢0.77
Two channels, each mixing five signals into one	10 mA	£6.25	£0.94
Two channels mag. Cartridge/ Mic + Volume	10 mA	£6.70	£ 1.01
To mix five signals into one + Bass/Treble controls	10 mA	£7.05	£1.06
To mix two signals into one + Bass/Mid-range/Treble	10 mA	£6.70	£1.01
Programmable gain/LED overload driver	10 mA	¢5.95	£0.89
Mic/Mag. Cartridge/Tape/Tuner/Aux +Volume/Bass/Treble/Balance	20 mA	£12.19	£1.83
Will drive headphones in the range of $4 \Omega-2 K \Omega$	80 mA	£12.35	£ 1.85
Two channels, each mixing ten signals into one	20 mA	£7.95	£ 1.19
Two input channels of mag. Cartridge/ Mic + Mixing/Volume/Treble/Bass	20 mA	£ 10.45	£1.57
Four channels of mag. Cartridge/Mic + Volume	20 mA	£10.75	£1.61
Depth/Delay	20 mA	Tob	ounced
Two Guitar (Bass/Lead) and Mic + separate Volume/Bass/Treble + Mix	20 mA	£12.25	£1.84
Two channels, each mixing five signals into one + Treble/Bass	20 mA	£11.45	£1.72
Two channels, each mixing two signals into one + Bass/Mid-range/Treble	20 mA	£ 10.75	£1.61
Two channels, each switching one of four signals into one	20 mA	Tob	ounced
Programmable gain/LED overload driver	20 mA	£9.25	£1.39

The modules are encapsulated and includ latest design high quality
clipon edge connectors.

For easy mounting w
recommend
B6 Mounting board for
modules HY6
 B66 Mounting board for
HY66-HY7

- H977
$99 p+13$ p. V.A.T

AIII...P. modules include
full connection data.
I.L.P. Products
are of British Manufacture.

 Ienclose Cheque \square Postal Orders \square. Please debit my Access/Barclaycard Account No

name.

ADDRESS.

"New Breed" for the 80's

Thinneor Monolithic Ceramic Capacitors
Full range of NPO and X7R dielectrics in 3 body sizes
Short rectangular rigid leads with menis

Try the "New Breed"

contact Vitramon Limited for further information

$$
\begin{aligned}
& 7 \text { itramm }
\end{aligned}
$$

ww - 015 FOR FURTHER DETAILS

TES MSTMMENTS	
thandar -	Mains Adaptors:
DIGITAL MULTIMETERS (LED):	(ence
(ex	
DIGITAL MULTIMETERS (LCD):	TF200, TP600, SC110 44.95
TM351...f99.00 TM 352. . 49.95	
FREOUENCY METERSS	
PRE-SCALER:TP600...........e37.50	
OSCIILOSCOPE: SCi110...... 1313.00	(ex ${ }^{\text {a }}$
PULSE GEN: TG105 885.00	
TG100... $£ 79.900$ TG102 $£ 145.00$	Instrument case.................e8.95
Carrying cases:	
DM 335. DM 350, DM450........ $¢ 7.70$	Bench Instrument Rack........ $£ 19.95$
TM 351 , TM 353 , TFA040, TG 102 ,	SERVICEMANUALS (each) *No VAT on manuals
TF200, TG 105, T' 100 \%,	15% VAT on all other prices Thandar orders $£ 1$ p\&p
TM $352 . \ldots \mathrm{E1.75}$ SC110..... $\mathbf{6 7 . 7 0}$	
SAFGAN SCOPES	
DT-410£169 DT-412£175 DT-415 £188 Probe (X1-REF-X10) $£ 11.50$. P\&P $£ 3.50$ or parcel service $£ 6.50(+15 \%)$ (All prices plus 15% VAT)	
Many more instruments in LEADER and TMK ranges	
All prices correct at 1.6.8 Cash with order or Credit Card	
DAROM SUPPLIES	
Open: Monday-Friday 9 a.m. - 5.30 p.m.	
4 SANDY LANE STOCKTON HEATHWARRINGTON WA4 $24 Y$ CHESHIRE	
WW-012 FOR FURTHER DETAILS	

RAM AND EPROM NEW LOW VAT INCLUSIVE PRICES

 transistorss, microswitches, V.D.D's sub-assembies
other stock lines. Just a mere traction of our vast range,
$\begin{array}{lcl}\text { TELETYPE ASR33 } & \text { ICL TERMIPRINTER } & \text { SCOOP PURCHASE } \\ \text { I/O TERMINALS } & 300 \text { BAUD TERMINALS } & \text { 12"VIDEO MONITORS }\end{array}$
(T)

EQUIPMENT CASES
 GIVE
YOUR
M MOME
ONLE
ONLY
C9.

STEP INTO THE 80's
WTH TOMORROWS WORLD THELOA NTE PRESTEL-VEWDATA
 avalable at a price you can afford. Just connect to
the aereial socket of any colouror flack and white
 are abe to view a staggering 110.000 pages of up to
the minut enformation on many services and
utitities, order goods foom companies, even play
 E1.75 carr. + VAT
SEND 197.51

KEYBOARDS

, 1

SEMICONDUCTOR
'GRAB BAGS'

MOFFFIN FINS

WW-069 FOR FURTHER DETAILS
${ }_{92}$
WIRELESS WORLD AUGUST 1981

P.\&R. COMPUTER SHOP

EPSON MX-80 80.GPs DOT MATRIX PRINTER WITH SPECIAL INTERFACES. 3982 IBM I/O PRINTERS. VDUS, ASCII KEYBOARDS, ASR, KSR, TELETYPES,
PAPER TAPE READERS, PAPER TAPE PUNCHES', SCOPES, TYPEWRITERS, FANS $4^{\prime \prime} 5^{\prime \prime} 6^{\prime \prime \prime}$. POWER
SUPPLIES, STORE CORES, TEST EOUIPMENT AND SUPPLIES, STORE CORESS, TEST EQUIPMENT AND
MISCELLANEOUS COMPUTER EQUIPMENT. OPEN: MISCELLANEOUS COMPUTER EQUIPMENT. OPEN:
MQNDAY TO FRIDAY $9 \mathrm{ma}-5 \mathrm{pm}$ SATURDAY TILL

MQN. 1

COME AND LOOK AROUND SALCOTT MILL, GOLDHANGER ROAD HEYBRIDGE, ESSEX
PHONE MALDON (0621) 57440 WW - 044 FOR FURTHER DETAILS

WW - 028 FOR FURTHER DETAÏ

WIRELESS WORLD AUGUST 1981

86 High Street, Bletchingley, Redhill, Surrey. RH1 4PA Godstone (0883) 843221

LOGABAX LX 180L MATRIX PRINTER $£ 525.00$

Cha $1+5$

 BRANDN180 C.P.S. $* 180$ C.P.S.

- 7 Crystal
to 06000 .
 - V24/RS232 and parallel
interfaces.
interfaces.
z80 controlled $\mathbf{w i}$
firmware in 780 controlled
tirmware in
2708 EPROMs. - Upperllower case, it
and double width.

DATA DYNAMICS Mode

 ASR 390 TELETYPE - ASC11 coded plain paper - 110 Baud V24 interface Keyboard Papertape reader/punch (papertape is still the enlymedium suitable for datal program transfer be
different systems)
Fullytested secondhand
machine

THE W.W. DISK OFFER

 RE-OPENS AT LASTWe have obtained a limited stock of European single sided mini floppy drives so please get orders in soon
Circle the enquiry number for data Total U.K. price including VAT at 15% and carriage, CWO

ONLY £155 EACH INCLUSIVE

(Drive $£ 132, P$ and $P £ 2.78$, VAT $£ 20.22$)
Please make cheques and P.O.s payable to
W.W. Disk Offer and send to:
W.W. DISK OFFER

49 Milford Hill Batford Herts
Please call 0582-429122 to check on availability before ordering
Allow 21 days for delivery. This offer applies to K. only and is subject to availability. For non .K. orders send SAE for quotation wW - 045 FOR FURTHER DETAILS

electronic products

Crevwerne. Somers
46306 MONTTH

PRINTED CIRCUITS

FOR WIRELESS WORLD PROJECTS

Audio co	
C.m.tune	
Audio	
Time code clock-Augus	
Date, al	
Audio preampiriter-November 19	
ee coder-Aporin memory-s	
distorition isc amp	,
thesized f f.m. transceiver-November 1977-2	. 00
d	
Metal detector-July $1978-1$ d.s.	
muato	. 00
Wideband noise re	
Versatile noise generator-Janu	
OMHz frequency meter-January 19	($\begin{aligned} & \text { ci7.00 } \\ & \text { 55.50 }\end{aligned}$
Distorion meter and oscillator-July 1979 -	E5.50
Moving coil preamplifie	3.50
	¢4.20 each
	7.50
r	
dio spectrum analyser-May 1980	E10
ultisection equalizer-June 1980-2 s.s.	
Floating-bridge power amp - Oct. $1980-1$ s.s. (12 V or 40V)	
Nanocomp - Jan. 1981 - 1 d.s. 1	00
Modular frequency counters-March $1981-8 \mathrm{~s}$ s.s.	
Opto-electron	
Airmail add 20\%, Europe add 10\%, Insurance 10\%.	
Remittance with order to:	

Happy Memories

Part type
416200 ns
411620

4116200 ns
4116250 ns
2114200 ns

2114450 ns
2708 450ns
2716 450ns 5 volt
2716450 ns three
2776450 ns three rail
2732450 ns Intel type
2532 450ns Texas typ
Low profili IC sockels: Pins Pence 814161182022222284
Soft sectored mini discs in plastic library case of ten discs
1 case: $£ 19 \quad 10$ cases: $£ 17 \quad 25$ cases: $£ 15.50$
TRS-80 Memory upgrade kits (4 K to 16 K) 10.50
Other kits available, please phone for details
Please add 30 p post and packing to orders under $£ 15$
and VAT at 15%
Access and Barclaycard accepted
24-hr. service on (054 422) 618
Government and Educational orders welcome, $£ 15$ minimum
Trade accounts operated, phone or write for details
HAPPY MEMORIES, DEPT. W.W GLADESTRY, KINGTON HEREFORDSHIRE HR5 3NY
Tel (054422) 618 or 628

De-mystify the micro with Practical Comphting

Cetting througn the jargon
barrier is the firtst problemfor
those who are learning about barrier sthe first problem for
those who are earning aoout
micro comuters - and the micro computers - and the
August stsue help yout to do
just that with antertaining
glossary of tho tece thnical jossary of those technical
grems which seer designedas
tuch to obscure as to convey terms which seem designed as
much
meaning. obscure as to convey

Other features in the August issue include

- Reviews of the Tandy Model III ana Sharp PC3021 business systems. - Evaluation of Micromodeller - a business modelling package similar - How asolicitor in wevmouth is using a microcomputer in his practice. Education - which comes first - hardware or software?
Cuidelines for those in schools who are getting to grips with microcomputers.
All this, together with our regular advice columns for users of Pet, Apple, Ta.

PLUS the official guide to the 1981 Micro computer show being held at wembley from newsagent or post this coupon now.

WIRELESS WORLD AUGUST 1981

WIRELESS WORLD AUGUST 1981
99

METALFILM RESISTOR

ONLY 3p EACH Minimum onese fivive
 4 Golden Sq., London W1

WW - 050 FOR FURTHER DETAIL'S

TV TUBE REBUILDING

Faircrest Engineering Ltd. manufacture a comprehensive
range of equipment for

 Fuil trainnig courses are individually tailored to customers requemis.

FAIRCREST ENGINEERING LTD.
Union Road, Croydon, CRO 2XX $\underset{\text { RADOMICROPHONES }}{\text { Con }}$

'PIKAMIC's the name, The Broadcast one A SENSATION that ts you use the Mic you ove, in an instant.
Unplug the lead, plug in the 'Pikamic' transmitter, FREEDOM is yours!

* Crystal controlled.
* Crystal controlled. * Integral Aerial.
* Max. dim. 31 mm dia. $\times 101 \mathrm{~mm}$ long

For full details contact:
For full details contact:
EDC (Elkom Design Limited),
29a West Street
29a West Street, Wareham, Dorset, England BH2O 4JS
Tel: Wareham (092 95) 6050
WW-071 FOR FURTHER DETAILS

YOU ARE? WELL SLIDE OPEN A TUBOX
AND EXPERIENCE REAL TOUGH ELEGANCE

* Anodised aluminium, ' U ' section base extrusion providing long term rigidity
Contrasting, black PVC covered, single piece slide-out covers
75 mm wide $\times 40 \mathrm{~mm}$ deep in 6 lengths
ranging from 70 mm to 220 mm
4 screw fixing enabling rapid access
So if you're into
Hand Held Instruments Walkie Talkies
In-Field Test Gear

TUBOX

Our prices won't make your eyes water Zaerix Electronics Limited 46 Westbourne Grove, London W2 5SF, England
wW - 013 FOR FURTHER DETAILS

ERemi
L.E.D.s. 125 and .2

1N4148 Diodes
 $\underset{\substack{\text { RED } \\ \text { V.or } \\ \text {. } \\ \hline}}{ }$
. $100+$ (1000+
.058 CARBON FILM RESISTORS
E12 SERIES Prices por 100 Larget and
Mixeo. Quantity prices avaliable.

LOW PROFILE I.C. SOCKETS

FIarrison Bros.
Electronic Distributors
22 Milton Road, Westcliff-on-Sea Essex SSO 7JX, England Tel: Southend-on-Sea (0702) 32338
ww - 041 FOR FURTHER DETAILS

*Power output is quoted in WrMS and is given for rwo mod
one module per PSU Or if using a stabilised power supoly.

Cicrimsonlekirik

SALE BY AUCTION

TO BE SOLD BY

ANGLIA INDUSTRIAL AUCTIONS

SPECIALIST AUCTIONEERS TO THE RADIO AND ELECTRONICS INDUSTRY
LOTS INCLUDE:
Resistors, capacitors, pots, connectors, switches, diecast boxes, plastic project boxes, vero board, transformers, relays, bulbs and neons, tools, transistors, valves, panel meters, digital watches, calculators, car radio speakers, intercom units, multimeters, cable, test equipment, radio telephones and spares, amateur radio transceivers, Weller spares, and two Ford Transit vans. Over 900 lots. Catalogues available

TO BE HELD ON WEDNESDAY, 12th AUGUST, 1981
ON THE PREMISES OF
B. BAMBER ELECTRONICS

5 STATION ROAD
LITTLEPORT
CAMBS. CB6 10E
TEL: ELY (0353) 860185

WW - 062 FOR FURTHER DETAILS
WIRELESS W

Reader Enquiry Service

429 Brighton Road Surrey CR2 9PS

Enquiry Readers
 | WW | WW. | WW |
| :---: | :---: | :---: |
| ww | ww | ww |
| ww | ww. | ww |
| ww. | ww. | ww |
| ww. | ww. | ww |
| ww. | ww. | ww |
| uw. | ww. | ww |
| ww. | ww. | ww |
| ww. | ww. | WW |
| ww. | ww. | ww. |
| ww. | ww. | |
| ww. | ww. | ww. |
| ww. | ww | | lease arrange for me to receive further details of the prooucis listed, me appropriate reference numbers of which have been entered in the Name . .
 Address.
 PUBLISHERS USE ONLY
 Position in Company
 Nature of Company/Business
 \qquad
 Wireless World: Subscription Order Form

Name of Company.

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:

Subscription Manager,

IPC Business Press,
Oakfield House, Perrymount Road,
Haywards Heath, Sussex RH16 3DH,
England

WIRELESS WORLD AUGUST 1981

SCOPEX 14D-10V Vital for Video

The 74D-7OV is a dual trace 70 MHz oscilloscope with active TV sync separator and line selector specifically designed for the servicing and alignment of video cassette and disc recorders, colour television and video games.

- Active TV sync separator
- $70 \mathrm{~cm} \times 8 \mathrm{~cm}$. display

Add and invert facility
Probe compensation
Line selector
Line selector
2 mV sensitivity on both channels Push button $X-Y$. complete with probes

At a price of $£ 29000+$ VAT
Carriage paid UK mainland.
Ensures continued British leadership
in the low cost high performance oscilloscope market.

米 An Independent British Company 粃

STABILISED POWER SUPPLIES
FARNELL A15: $210 / 240 \mathrm{~V}$ IP. Dual Op. $12-17 \mathrm{~V}$ per rail at
100 mA . Remote sensing, current limit protection. 1164×130

 BRANDENBURG Photomultiplier PSU. 19in. rack mounting.
Metered current limit protection. Metered, current limit protection.
$374,3744300-1 \mathrm{KV}$ at 5 mA .
377500 V -1 K5V at 6 mA.
$37666 \mathrm{~V} . \mathrm{K} 6 \mathrm{~V}$ at 10 mA.
tive polarity op.
All models $£ 40$.
All models $£ 40$.
Some photo multiplier tubes avaiable.
COUTANT ESM 3 : $105 / 1155 / 222 / 24240 \mathrm{~V}$ P. Four separate ops:
5 V at 3 A stabilised with current limit, overvoltage crowbar 5 V at 3 A stabilised with current protection and remote sensing.
$\pm 12+15 \mathrm{ta}$ at 500 mA stabiised.
12 or $24 V$ unstabilised. $1125 \times 80 \times$

 Mostly ITT EN 1212 m EN 1235 types.
Please send for our electrolytic list, eg. $220 / 50 \mathrm{VA}, 220 / 25 \mathrm{R}$,
$470 / 25 \mathrm{R}, 4700 / 25 \mathrm{~A}, 470,50 \mathrm{~A}, 2200 / 100 \mathrm{CAN}$. 470/25R, 4700/25A, $470 / 50 \mathrm{~A}, 220$
CAPACITORS-DISCERAMIC
Over 2 million now in stock, mo
Over 2 million now in stock, mostly ITT. Many high-voltage
types, e.g.:

$220 \mathrm{p} 1 \mathrm{KV}, 1 \mathrm{n5} 3 \mathrm{KV}, 4 \mathrm{n7} 7 \mathrm{~K} 5 \mathrm{~V}$.
Please send for our ceramic capacitor lists.

PYE HEAD CLEANING CAS-
SETESE. Brand new or
boxed 50pea boxed, 50pea.
CASSETTEDECK: With ste-
reo heads, mechanicallyreo heads, mechanically-
complete, but with no
ele complete, but with no
electronics. Smart black enetronics. Smart black
modern finish.
We have VERY LA.OD We have VERY LARGE
QUANTITIES
$0.1 \mu / 16 \mathrm{~V}$ disc. ceramic but,
 Very PIHER PRESETS Very large stocks, PT10,
PT15 enclosed types. Please
send for our preset list. Most send for our preset list.
values $100 R$ R-5M
HEAVY DUTY KEYSWITCHES
 $49 \mathrm{~mm} \square$ Fascia. We have the following quan-
tities of ow profile GOLD
PLATED I.C. sockets PLATED I.C. sockets manu-
factured by Winslow, factured by Wins
discount on quatity.
off prices as follows: offprices as follows
9 PIN
9 PIN
14 PIN
16 PIN

24 PIN
28 PIN
40 PIN
CANNO

type or Souvrian/McMurdo
Daiss 60 p ea. Also Cannon
9w plug, brand new, 60 ea.

Welwyn strain gauge. (Precision Micro-Mea-
surements). Romulus Miche gan type MA-09-500B4-350. ©ur price $£ 1.25$ ea. List price able.
$3 / 45$
100 kJ Turn Cermet Trimpot
1 100 kr . 1 off price, 20p. By
Beckman \& A.B.

REDPOINT HEATSINK, Type
TV4 15p ea. 1 off price. Discount on quantity. price.
We have the following Wel-
 $2 \mathrm{~K}, 3 \mathrm{~K}, 10 \mathrm{~K}$, , 0 K, , 30 K , 1 M Meg.
Price 25 p ea. Type 4802 . Price 25p ea. Type 4802.
BURROWS
(LH) 1701, 41 c , 20p; Burtor
(Burrows (LH) 1701, 41 c , 20 , ; ; Burrows
Conector
25p. Large quartitities avail25n. Large quantities avail-
able.
METWAY P, conNECTOR able.
METWAY P.C. CONNECTOR,
3-way typep95/3DS, 10p ea. 3-way tye P95/3DS, 100 ea.
1TT YEMPKIT Electornic ther-
mostat ZBI. 5669 . Brand new. mostaa ZBI. 5669 . Brand new.
E4ea.
4-WAY DPDT AND 5-WAY 4-WAY DPDT AND 5-WAY
DPDT DIL SWITCHES, by ERG Components and CTSS.
Gold contacts 80 e ea. Brand
new and boxed. God contacts
new and boxed.

BUZZERS, 6 v and 12 v , 50 p WIRE ENDED NEONS
£20/£1,000. SPECIAL OFFER. Mini-toggle switch by C. \& K K., 3 Pcl/o.
Long dolly or short, 50 pea.

Telex 291429
D TO A CONVERTERS
By Micro Consultants Ltd. 50Ω cable drive op. Linearity
0.25%, max. 0.125% typ. Sttling time: 2 V step 70 nS typ. 2MV step 50 .ns colour television transmission standard. Diff gain 0.5% diff. phase shift 0.5° types rad 802 and MC2208/8.
Unused. Ex-maker's pack.

 2-12, $0-1296 \mathrm{VA}$ $220-22500 \mathrm{~mA}$ 2V 250 mA
 in stock at last count. 2 million in stock at last count.
CARBON FILM $1 / 4 \mathrm{~W}$ 5\% E12 2n ea. f1/100, $66.50 / 1,000$,
METAL OXIDE/FLM: Mos values in E24 range, 4 -2W 5 tolerance available.
WRE WOUND ORI-100K 3 roppers available. Goo election of metal clad high ROTARY SWITCHES Over 30 different types avail
MINIATURE LATCHING
MINIATURE
LATCHING
SWITCHES, 3 Pc/o by Micro a division of Honeywell Ltd.,
Lto
and anc. $3 \mathrm{amp}^{250 v}$ a.c. Part No
$8 \mathrm{~N} 3011, \quad \mathrm{f} 1$ ea. Miniature momentary 1 Pcco switch by
Micro, 3 amp 250 v A.C. Part WHISPER FANS 4, Type number WWR2A1. 115
volt, $50 / 50 \mathrm{HZ} 7$ watt. Brand ew, £4 each
SPECTRA STRIP CABLE, wisted pair, $\neq 130.00$ per
box, discount on quantity
We have large quantities of
ftt Imhoff/Schroff racks rice $£ 20.00$ each. All in
lect.
$\begin{array}{ll}\text { SPECIAL } \\ \text { SC65 } \\ \text { OFFER } \\ 0.1 \% & \text { FFilmet } \\ 0.1 \% & \text { metal film }\end{array}$ CERMET PRESETS ${ }^{200}$ ea 10A 2500 AC ILLUMINATED ROCKER SWITCH
Red, DP ST $26 \times 30 \mathrm{~mm}$ rect. Red, DP ST
Snap-in type
16A 250V AC ILLUMINATED
ROCKER SWITCH (Amber). $14 \times 30 \mathrm{~mm}$ rectang-
ular snap-in type. SPST 30 p
 This advertisement is mainly of our excess stock holding. We also have excellent stocks of semiconductors, hardware, cables,
etc, etc. For further details send for our lists and retail price catalogue, phone or visit our shop. All prices are exclusive of VAT
(and P\&P). Minimum Mail Order f5 + P\&P + VAT. Government departments, schools, colleges, trade and export welcome.

RHODE \& SCHWARZ - Selective UHF V/Meter. Bands 4 \& UHF Sig. Gen. type SDR 0.3-1 GHz $£ 750$. UHF Signal Generator SCH $\mathbf{£ 1 7 5}$. POLYSKOPS SWOB I and Modulator/ Demodulator BN17950/2 UHF Sig. Gen. type SCR. $1-1.9 \mathrm{GHz}$.	P. F. RALFE ELECTRONIC 10 CHAPEL STREET, LONDON, NW1 TEL.: 01-723 8753
MARCONI TF995B/2 AM/FM Signal Generator TF2500 Audio power meter 6551 SAUNDERS. $1400-1700 \mathrm{MHz}$. FM TF1066B / 1. $10-470 \mathrm{MHz}$. AM / FM TF1152A/1. Power meter. 25 W .500 MHz TF13 TF1370A RC Oscillator $£ 135$. TF791D Carrier Deviation Meter.	RANK KALEE 1742 Wow \& Flutter Meter AIRMEC 314A Voltmeter. 300 mV (FSD)-300V. AIRMEC Wave Analysers types 853 \& 248A. DERRITRON 1KW Power Amplifier with control equipment for vibration testing, etc HEWLETT-PACKARD 8551B/851B Spectrum Analyser.
BECKMAN TURNS COUNTER DIALS Miniature tye (22 mm diam $)$. Counting up to15 15 turn "Helipots." "Brand new with mountinginstructions. Only $£ 2.50$ each.	10MWZ-40T-PACKARD tuned amp \& null detector. HEWLETT-PACKARD 331A Distortion Meter RADIOMETER Distortion Meter BKF6 $£ 125$.
PRINTED CIRCUIT MOTORS 'Printed Motors Ltd' type G16M4. 60V DC. 5.5 Diameter $7.5^{\prime \prime}$. Depth $2.5^{\prime \prime}$. Shaft diam. $1 / 2 \&$ $3 / 4^{\prime \prime}$. Price from Printed Motors is now ove tested \& guaranteed £25 each (postage £3).	
AUDIO \& RF SIGNAL GENERATORS AIRMEC 352 Sweep Generator	
20-WAY JACK SOCKET STRIPS. 3 pole type with two normally closed contacts $£ 2.50^{\circ}$ above - 20p ea. (pp free)	PLEASE NOTTE. All the pre-owned equipment shown has been

The Tektronix 2200 Series. So advanced they cost you less.

Advertisements accepted' up to 12 noon Monday, issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 13.50$ per single col, centimetre (min. 3 cm) LINE advertisements (run on): $£ 2.50$ per line, minimum 5 lines. (Prepayable).
BOX NUMBERS: $£ 1.50$ extra. (Replies should be addressed to the Box Number in the dyvertisement, c/o Quadrant House, The Quadrant, Sutton, Surrey SM2 5AS.)
PHONE: OPHELIA SMITH, 01-661 3033 (DIRECT LINE) Cheques and Postal Orders payable to IPC Busines Pres

Flectronics R\&D

Join us in the forefront
of technology

HF-VHF-UHF

Microwave Optics \& Acoustics A challenging and full career in Government Service
Candidates, normally aged under 30 , should have a good honours degree or equiv-
alent in a relevant subject, but any candidates alent in a relevant subject, but any can
about to graduate may be considered. Appointments as Higher Scientific Officer ($£ 6,075-£ 7,999$) or Scientific Officer ($£ 4,805-£ 6,480$) according to qualifications and experience. Promotion prospects. the Recruitment Officer (Dept. WW881), H M Government Communications Centre, Hanslope Park, Milton Keynes MK 19 7BH

SOUTH HAMMERSMITH HEALTH DISTRICT CHARING CROSS HOSPITAL (Fulham)
Electronics Technician Engineer
with at least 2 years' experience in the maintenance of electronic equipment - not necessarily in a hospital
and $O N C$ qualified or equivalent, required to iointh Medical Electr
Department.
The work involves maintenance cal ibration and electrical safety testing of a large range of electronic equipmes on patient care and monitoring in the intensive
emphasis unit and the oren
care emphasis and the operareting theatres. Design and antensive
care unit ane
development of special equipment using digital, analog development of special equipment using digital, analog
and microprocessor techniques is undertaken. Inclusive salary scale: $\mathrm{E4931-Ef317} \mathrm{(MPT} \mathrm{IV} \mathrm{grade)}$.The
salary scale is subject to review from 1st April, 1981. salary scale is subject to review from 1 st Aprii, 1981 .
For further information and an application form, please For further information and an application form, pleas
contact Jan Newbigin, Personnel Department, Brandenburgh House, 1116 fullam Palace Road, London
W6. Telephone 01-748 2040 ext. 2992 .

HUNTING SURVEYS AND CONSULTANTS LIMITED

SENIOR ELECTRONICS MARINE SYSTEMS ENGINEERS

Electronics Engineers with at least four years' experience of
North Sea geophysical operations are required to man survey North Sea geophysical operations are required to man survey
vessels using the latest instrumentation for pipeline and rig site vessels using the latest instrumentation for
surveys including digital seismic equipment.
A knowledge of marine computers and data acquisition systems would be advantageous.
Engineers appointed must be capable of planning and control-
ling installations and day-to-day operations at sea.

Please write to:
Mr. G. T. Harran (Personnel Manager)
Hunting Surveys and Consultants Limit Elstring Surveys and Consult
Hear, Borehamwood
Herts WD6 iSB Herts WD6 1SB

Senior Engineer/Engineers

Have you considered helping to control the technical quality of Independent
Broadcasting? We take great pride in the fact that our System is one of the best in the world and great importance is placed on maintaining the quality of the Service.
We are looking for staff to work in our Quality Control Section of our Network Operations and Maintenance Department. Within the two units which form
this section we have the following vacancies.

Technical Facilities Unit (Ref. Ww/608cc) This Unit operates comprehensive technical facilities for use by all the Headquarters and at many external locations. We are looking for staff who ave the experience of working in technical operations to the ultimate tandards associated with UK Television and Radio broadcasters, and who
now the systems philosophies, as well as the design minutiae, of equipmen s diverse as television cameras, stereo sound desks, vision mixers, audio and
You must be used to "OB life" - self sufficiency in ad-hoc arrangements yet If you have at least five years' (for the Senior Engineer post) and 18 months' (for you have at least five years' (for the Senior Engineer post) and 18 months' (for the Engineer post operational experience in radio and elevevision, are quaified ork in a team where Quality is the keyword, we would like to hear from you.
Quality Control Unit (Ref. Ww/610cc)
This Unit helps to monitor and control the technical quality of both the ITV and ILR services. We are looking, therefore, for staff who want a challenge - -
challenge of dealing with television cameras, film, audio and video recording, ransmitters and acoustics, to mention but a few of the topics. transmitters and acoustics, to mention but a few of the topics.
If you have at least three years' operational experience in radio and. television broadcasting, are qualified to the equivalent of HNC level in Electrical/Electron Engineering and, above all, want to help maintain a thoroughly professional

All posts involve working a way from
A current driving licence is essential.
The commencing salary (depending upon qualifications and experience) will The commencing salary (depending upon qualifications and experience) will
be on a range which rises to $£ 11,040$ per annum for the Senior Engineer post, and to $£ 9,603$ per annum for the Engineer posts. Salaries are currently unde

IBA
 INDEPENDENT
 BROADCASTIN AUTHORITY

These posts are open to both men and women. Please write or telephone for
an application form tuoting the appropriate reference Gossling, IBA, Crawley Court, Winchester, Hampshire SO21 2QA. Telephone: 822270 .

VISION ENGINEER

The Television Centre produces a range of colour pro-
grammes of broadcast quality which are schools and colleges throughout the UK and overseas in videocassette form.
Appllcations are invited for the position of Vision Engineer to be responsible for the output of the Link 110 colour cameras.
The Vision Engineer will be expected to have practical
experience of television studio lighting for all types of experience of television studio lighting for all types of
programmes: duties include control and matching of the cameras and a Rank Cintel Telecine.
Applicants must possess suitable technical qualifica tions, and have a good working knowledge of all the The salary scale (ST3) £8,304-£8,916
Application forms and further details available from: The

London SE1. Telephone: 01-633 7456

URGENTLY REQUIRED
TRANSMITTER ENGINEERS
SHORT WAVE, MEDIUM WAVE LOW \& HIGH POWER

We have several vacancies for U.K. based installation engineers for overseas projects in

AFRICA and the FAR EAST

U.S.A

For further information please telephone TONY OWERS
Would previous applicants please reconfirm their interest
PERSONNEL \& ELECTRONICS LTD.

Triumph House, 1096 Uxbridge Road, HAYES, Middlesex UB4 80 Tel: 01-573 8333. Telex: 934271

DODolby

TEST SUPERVISOR

S. London
£8,000 +

Dolby Laboratories have achieved a worldwide reputareduction equipment which is used in the recording broadcast and film industries. The high quality is maintained by extensive testing and precise alignment using the best propriery and. We require a graduate engineer with appropriate
supervisory experience to take charge of the Test department.
Responsibilities, in addition to direct supervision, include co-ordination with the Sales Department, recruitment and training of staff and the review of test methods with
the Production Engineering Department
Several opportunities at various levels with our clien - a prime manufacturer of computer-based systems. Experience gained with Membrain - Terradyne or
similar ATE systems/software and a good - Digital//Analogue circuit knowledge would bring rewarding career development prospects.
Please contact: Mike Gernat quoting reference: 236A. Tel: 076-384676

Salary will be dependent on qualifications and exper ience. 22 days' annua
and sickness schemes.

Write or telephone:

$$
\begin{aligned}
& \text { DOLBY Dan Bleakley } \\
& 346 \text { Clapham Road, Lorondos INC. } \\
& \text { Tel. 01-720 1111 SW9 9AP }
\end{aligned}
$$

EST TECHNICIAN

majer U.S.A. manufacturer with world leadership in the radio control of industria achines, systems and processes, in collision prevention, a
electronics activities.
Our products are founded on the Near Field ducction Effect and on other inductive techniques. No other U.K. company has a
comparable product line and our business herefore offers experience of unusual terest. Training in our techniques is
provided.
Continued expansion has created a vacancy
for a technician whose principal duties will be the testing and repair of a variety of lectronic systems and modules. The person
ppointed will work with a small team of ngineers but must be capable of operating with a minimum of supervision whil
maintaining the highest standards.
Applicants will be expected to have an appororiate qualification and experience is type of work.
Salary will be negotiabie and dependent on
qualifications and experience. The company operates a bonus scheme and offers a generous range of benefits. Prospects of
advancement are excellent.
Please apply in writing, giving details of

Appointments

Instrumentation Engineer

Taylor Woodrow Research Laboratories, based in Southall, Middleses carry out a wide variety of civil and structurs
requires instrumentation in various forms.
To strengthen our capabilities in this field we are setting up an Instru:
mentation Group to be responsible for this activity within the Laboratory. mend we are seeking an experienced Engineert on head up the Group, which ke the following

* Design and construction of instrumentation for materials and structural
component testing under a variety of extreme regimes. Development of innovative measurement techniques to be
example in surveying structures for signs of deterioration Development of systems for data monitoring and analysis using
microprocessors, data loggers, computers, etc. - Providing advice to research groups on the design and procurement of
instrumentation for on-site testing.
Suitable applicants are likely to be in their thiries, have a degree in
Physics or relevant Engineering discipinine, considerable electronics exPhysiss or relevant Engineering discipinine, considerababe electroniose ex-
perience and a proven record of success in in the instrumentation field.
For more information and an application form, please contac
The Personnel Manager (Ref RDB), Taylor Woodrow Construction
Limited, 345 Ruisilip Road, Southall, Midalesex.
Tel: 01-575 4596/4286
TAYLOR WOODROW

EPbed

Technical Specialist Police Operational Equipment

Chelmsford-based

This is an opportunity to join the Home Office Police Scientific Development
Branch (at Chelmsford, Essex) and be Branch (at Cheimsford, Essex) and be
responsible for the day-to-day running of
the Technical Support Unit. The work involves identifying, selecting
and making items of electronic, optical. acoustic and electrochemical equipme to support police operations,
assisting in these operations; constructing new or modifying existing
equipment, maintaining sophisticated equipment, maintaining sophisticated
equipment at maximum efficiency and accurately recording its use, liaising with
senior police officers and advising on the senior police officess
possibilities of new technology to improve efficiency. A considerable amount of traveling is involved and
attendance at irregular hours will sometimes be necessary. Candidates must have an ONC,
$T E C / S C O T E C$ Certificiate or an equ qualification in engineatering, applied physics or other relevant subject; a
higher qualification such as HNC would
e advantageous. They must have served n apprenticeship, or have had subject, ant thave an aggregate of 15
years' training and expreience which years' training and experience which
must include wide experience in the construction and operation of the elevant equipment. Some knowledge of meta detection techniques, photography necessary. Management
would be an advantage.
Starting salary between $£ 7,000-£ 8,100$ epending on qualifications and
xperience (salaries under review). experience (salaries u
Promotion prospects.
For further details and an application write to Civil Service Commission, Alencon Link, Basingstoke, Hants' KG21
$1 J$ or telephone Basingstoke (0256) JB or telephone Basingstoke (at56)
851 (answering service operates Outside office hours). Please quote ref: working on control systems E12,000. Bucks. mplementation for time
recording systems. $£ 10,000$. Herts.
4. POWER/CONTROL ENGI4. PER. WOR/CON , wot Exociser
system on Motorola 6809 . system on Motorola 6809 .
E9,500. Surrey.
REAL TIME SOFTWARE EN 5. REAL TIME SOFTWARE EN
GINEERS. Avionics, radar Gontrol applications. $£ 11,000$
condar +. Surrey,London, Herts,
6. DESIGN
ENGINEER. nationally known company 8.0.00. Mid
HUNDREESS HUNDREDSOFOTHERELECTRONNCS
AD COMPTERVACANCIES TO ANTHONY GiLEs, M.S.c., c. Eng. M.I.E.E.
CLIVEDEN CONSULTANTS ${ }^{87}$ St Leonards's foad Windsor, ${ }^{\text {Be }}$
CLVEDEN

INNERLONDON EDUCATION AUTHORITY SENIOR TECHNICIAN

 GRADE 7
 Nircoprocessors or computers is is de
sirabie.

TOP JOBS IN

 ELECTRONICS Posts in Computers, Medical,Comms, etc. ONC to Ph.D. Free somice.

Phone: 01-906 0251

HOME AND OVERSEAS AGENTS DISTRIBUTORS
Well-established companies re-
quired for distribution of a com-
qehensive range of Electroni prehensive range of Electronic
TYest Instruments incluatin:
Oscilloscopes, Signal Generators, Oest in stopenm
Osultimeters
Mul Encuitimeters to Universal Engineers

ELECTRONICS TECHNICIANS
 Total involvement across the spectrum of advanced communications

- world's foremmenst centress for research, developpment and production in the world's oremomost entres for research, development and production in
the fields of voice and data communications and communications security. Its comprehensive facilities, some of them unique, are geared towards producing creative solutions to complex communications problems using
state of the art techniques including computer/microprocessor aplications.
There are currently opportunities for those with proven practical experience in electronics to become totally involved in comple
spanning the whole spectrum of electronics technology. As a eleccommunications Technical Officer you will supervise a tea commissioning and maintenance of advanced ted technology systems in the UK commissioning and maintenance of advanced technology systems in the UK nd research scientists involved in planning, research and engineering velopment.

You will take part in most areas of activity and typical examples of current projects include:--
pace commun
Iicrowaves maintaining new earth stations.
Designing special aerials and electronics for mobile units.
Computer Systems
Piovital Communications
Providing a complex and comprehensive computer network system.
Analogue Communications
Designing and equipping radio station

Most of these opportunities are in Cheltenham but there are others elsewhere in the UK and your preference for location will be taken Cheltenham
A significant advantage for people working at GCHQ in Cheltenham is is
location in location in this elegant Regency town set in the heart of the Cotswolds. You
can choose to live in the town itself, orin surround it. Either way you will have easy access to geigd shops, schools surround it. Either way you will have easy access to good shops, schools,
sports facilities and cultural amenities in Cheltenham and nearby Gloucester and also enjoy fast road/rail links to London, the Midands and the West Country. RELOCATION ASSISTANCE MAY BE AVAILABLE Candidates m
Telecommunications or simimiar disciplines; or a C City \& Guilds Part I Telecommunications Technicians Certificate or or Party \& Guilds Part II
Teleconmunthematics B Computers B; or an equivalent or higher qualification. In addition, all candidates must have had appropriate training and will normally be expected
to have had 4 years "hands on" or roven to have had 4 years "hands on" or proven managerial experience in rad opportunities to join GCHQ at Radio Technician level Starting salary will be in the range $£ 5310-£ 7170$ depending upon
qualfictations and dexperience qualifications and experience. There are good prospects of promotion to posts with salaries of up to all, 100 . Salaries under ferm (to be returned
For further information and an application form by 6 August 1981) write to Civil Service Commission, Alencon Link, Basingstoke, Hants, RG21 1 JB, or telephone Basingstoke (0256)
68551 (answering service operates outside office hours). 6851 (answering service ope
Please quote ref: $T / 5547 / 2$.

ARE YOU GOOD BUT GREEDY?
of modems and multived of current
DIGITAL EXPERIENCE? FIED, SUPPORT AND RODUCTION. VACANCIES SIN
COMPTTERS. CN. COMMS.,

For foreogisisidien

Appointments,

CENTRAL SERVICES DEPARTMENT OF THE SCOTTISH OFFICE Wireless Technicians

 A clean current driving licencee and
commerial leviles are ensential. Application forms and further information are obtainable from
Scottish Office Personnel Division, Room 110 , 16 Waterloo
 8400 Ext. ${ }^{31417}$ or or 5028 .
Closing date for receit Closing date for
August, 1981.

OLDCHURCH HOSPITAL ROMFORD, ESSEX RM7 OB
 Electronics Technician
 Salary scale, Medical Physics Technician III, commencing $£ 5,750$ (lor at 23 years or over $£ 6,832$) rising to $£ 7,277$ per annum inc- luding London Weight Electronics Service Techni partment of Bio-medical Engineering Applicants Applicants should hold a minimum of ONC in a relevant subject and have held a post at Technician IV, or equivalent for at j. three years. They should have experience in the running of day service requirements of the increasingly and in the day-today service requirements of the increasingly complex tect. logical environment to be found in a General Hospital. For further information contact: Mr. R. North, Head of Bio- medical Engineering Department, at the Hospital. Tel: Romford U6000 medical Engineeri 46090, Ext. 3326 .
 Closing date 12th August, 1981

Logic and Television ENGINEERS

We urgently require a Logic Engineer with practical ex perience
Interesting and varied work in the Leisure industry. Good
salary - negotiable. Prefer 25 or over. Prospects for the salary - negotiable. Prefer 25 or over. Prospects for the
right person in this leading company which is a sub right person in this leading
sidiary of Trusthouse Forte
This is not a field service appointment, Candidates mus therefore live within reasonable travelling distance.
Apply in writing and strict confidence to:
J. C. M. Pryde, Esq., Managing Directo
LONDON COIN MACHINES LTD. 22/24 Bromells R MACHINES LTD.

NORTHERN REGIONAL HEALTH AUTHORITY ELECTRONICS
TECHNICAL ASSISTANT Required for Regional Engineer's Division, based at Walkergate, New
castle upon Tyne. caste upon Tyne.
The appointent.
$\epsilon 7824$ per annum. The appointment will be at Technical Assistant Grade 1. Salary $£ 6633-1$. ${ }^{\text {The per anum. }}$. The post offers technologically interesting and varied work, with excel
Tent working conditions and well-equipped laboratories visits to hospitals throughout the Region, for which financial rial reimburse
ment ismad Apflicants must be of high calibre and have had considerable and broad
experines with modern electronic equipment.
 Application form and job description from the Regional Personne
Officer, Northern Regional Health Authority. Bentield Road Newcastlo upan Tyne NEE 4PY NY
Closing date: 31 July 1981 .

We, a progressive Broadcast TV facilities company,
require an experienced and capable Electronics Engirequire an experienced and capable Electronics Engi-
neer to take responsibility for the maintenance and neer to take responsibility for the maintenance and
development of our electronic equipment and CMX computer system
This is a senior role within the company and the salary
and conditions will reflect the level of the person reand con
quired.
Suitable applicants ring:
R. Knibbs on 01-7229255
TRANSVIDEO LIMITED
ST. JOHN'S WOOD STUDIOS, ST. JOHN'S WOOD TERRACE
LONDON NW8

CAPITAL HOUSE 29-30 WWDMILL STREET STNDON W1P 1HG TONDON $01-637$ 555.

concerned organisations. Experience in small scale prod
be an avevantage.

WIRELESS WORLD AUGUST 198

Visnews

Broadcast Facilities

Rapid expansion in the commercial activities of the
Broadcast Facilities Division of Visnews Limited has Brosulted in the creation of immediate opportunities for
res
suitably qualified and suitably qualified and experienced personnel
Vacancies exist for the following:
Videotape Editors
Operational Engineers
Maintenance Engineers
Videotape Operators
The Division provides television production, post of customers in the UK and overseas including major broadcasters, production houses and record
companies.
.

In addition to the above, the activities of Visnews In addition to the above, the activities of Visnews
include the world's largest Television News Agency,
satellite communication sponsored productions and satellite communication, sponsored productions and overseas training programmes. Growth in the
Company provides ample opportunity for career Company provich
development.
We are offering an attractive remuneration package which currently ranges from circa $£ 8,500$-circa $£ 13,000$ and pattern of work. Our comprenensifive bexefits package includes contributory Pension Scheme, free
Life Assurance, car parking facilities, subsidised
canteen and bar.
Applications in strict confidence to Miss Alison Newel Personnel Manage

Exeter Health Care District
Basic Grade Electronics Engineer/ Physicist
to join a team of graduates and technicians responsible for monitor and treat patients. The person appointed will be expected to partake in the routine peps.m. and sen sevicing of a
wide range of instruments. There will also be scope for some design and development work
Applications are invited from those who possess a Degree or
equivalent qualifications and have equivalent qualifications and have an interesst in this type of
important work and also wish to assist in developing an association with the Audiological Service. Added to to this are
the benefits of living in a very pleasant area with excellent the benefits of living in a very pleasant area with excellent
sailing facilities, etc.
Starting salary $£ 5,346$-£5,958 p.a. according to qualifications Contact either Dr. D. James, ext. 2278 or Mr. J. Burgess, ext.
2240 for further details.

Application form and job description from Personnel Department, Royal Devon and Exeter Hospital (Wonford), Barrack

Appointments Developyour potential in our future

Founded in 1936, Marconi Instruments today employs some 2,000 people in the design, development, production and marketing of its advanced
communications test equipment and A.T.E.

To meet the challenges of tomorrow's markets, we need mew ideas into fully ors and to need production and service personnel as well.

If you would like to develop your potential in the
exciting future of Europe's leading test equipment
specialist, complete. specialist, complete
the coupon and send it to us at the address below:-
instruments
Return this coupon to John Prodger, Marconi Instruments Limited,

MOVE INTO MICROS WITH TOP BRITISH MANUFACTURER ELECTRONICS TECHNICIAN (SERVICING)

ARABIAN GULF

Offshore

BP wishes to recruit an experienced Tele- B.Sc in telecommunications engineering communicationsEngineeronanoverseas short service agreement - minimum 3
years-for service with Abu Dhabi Marine OperatingCompany based offshore. The successful candidate's main duties will be the direction and control of the installation, maintenance and operation of telecommunications equipment in off-
shore areas. This includes MF radio beacons, HF, SSB networks, automatic dialling radio telephones, VHF and UHF aircraft stations, VHF ship stations, multichannel microwave circuits with
associated multiplex equipment VHF radios, small telephone exchanges and telephone distribution etc.
Applicants, aged 27 to 45 , must possess

or equivalent, with at least 5 years experience in repair of radio and related

 This post is offered on an unacco basis. The working schedule is 29 day duty followed by 27 days off duty, with fares paid to the UK.A progressive salary dependent on age qualifications and experience is paid in local currency and will be in the range current exchange rate of approximately Dirhams $7.2=£ 1$. This equates to around £1217 to £1480 permonth. Benefitsinclude salary presentity free of local tax, free air
cond medical attention whilst on site.
Please write giving details of age, qualifications and experience, quoting reference ZH.1,to: Mrs. S.J. Bartholomeou, Central Recruitmen Britannic House, Moor Lane, London EC2Y 9BU.

ALWAYS AHEAD WITH THE BEST!

£5,000-£15,000
PDP 11: NOVA: ECLIPSE: Z80: 8080: 6800: BIT-SLICE: TTL: cessors: Flight Simulators: ATE: Electro-Medical: Teletext: cessors: Flight Simulators: ATE: Elec
Data-Comms: Automation: Microwave? Where does your skill and interest lie

Serve? Software? Consultancy? or perhaps Research?

* Our clients are drawn from all sectors of industry:
* Mase your first call count - Contact MiKE GERNAT on $076384676 / 7$ (usually until 8 p.m.) Electramic computer and manatement appointments limited ELECTROMIC COMPUTER AMD MANAGEEMENT APPD
$148-150$ High St., Barkway, Royston, Herts SG8 8 8G.

E5-7.6K, OXFORD-BASED

Research Machines is looking for an experienced electronics technician to join the small in-house used microcomputers.
With several thousands of our $380 Z$ systems in use, and a major range of very exciting new maintain a high level of customer satisfaction is xtremely important. Fast, efficient, eftective ervicing and rep.
mportant to us.
Succesful candidates should have:
Experience of working with complex TTL
ONC, HNC, or A level qualifications, but good relevant experience would outweigh \square Initiative and a sense of responsibility
\square Knowledge of microprocessors is not necessarily required, as long as you have a strong desire to acquire expertise in this fiela.
Starting salary is between $£ 5100$ and $£ 7600$, depending on age and experience, and we also BUPA, life, and disability bensurance. A pensio cheme is being introduced.
If you are interested in this vacancy, please contact Mrs Ann England, by phone or letter
for an application form, quoting OT 7/1.

RESEARCH MACHINES
 MCROCOMPUITRSSSIENS

RESEARCH MACHINES LTD Mill Street, Oxford OX2 OBW, Tel: (0865) 49791
ROYAL MILITARY COLLEGE OF SCIENCE
SHRIVENHAM, SWINDON, WILTSHIRE

RESEARCH SCIENTISTS

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING INTERACTION OF MICROWAVES WITH THE HUMAN BODY Applications are invited for a research post concerned with innovative electromag-
netic engineering design work on microwave antennas and devices for inducing netic engineering design work on microwave antennas and devices for inducing
hyperthermia and monitoring tissue temperature. This research is sponsored by the hyperthermia and monitoring tissue temperature. This research is sponsored by the
Medical Research Council and will be carried out in collaboration with the MRC Unit, Hammersmith Hospital where the clinical applications of microwaves to cancer treatment is being investigated.
This is a Period Appointment with a duration of three years.

This is a Period Appointment with a duration of three years
Appointment will be made at Senior Research Scientist/Higher Research Scientist
level according to qualifications and experience. QUALIFICATIONS: Applicants must hold a good honours degree in physics, mathe matics or engineering and have the ability to carry out experimental and engineering design work in microwaves. SALARIES: Higher Research Scientist (minimum of 2 years' postgraduate experience) £6,075-£7,999; Senio
ience) £7,644-£9,619.
Accommodation for a single person may be available in a Hall of Residence and there
is a possibility of housing for a married andidate Application forms and further information may be obtained from the Civilian Admin Office, Royal Military College of Science, Shrivenham, Swindon, Wiltshire SN6 8LA Telephone 0793-782551 Ext. 421. Please quote reference HO 120/1/122
SERVICES

BE A COLOUR T.V. ENGINEER Two years' full-time Higher
Diploma Course in Electronics, colour T.V. and V.C.R. Next course
commences September 1981 and January 1982 . REESWOOD COLLEGE LONDON W2 IBB ${ }^{(1219)}$ Telephone 01-402 $9985{ }^{\text {11 }}$

Coventry
Polytechnic incinviter)
TENDERS
for the supply of
WALKIE-TALKIE SYSTEM

ACIILTIES AVAILABLE

国

PRINTED CIRCUIT BOARDS
 маганоо ргв со. .tт.

BOARDRAVEN LTD.

SMAL Batch pCEB produce ANELS, LAEELS. CAmera Hio

ESIGN Barnet.' Herts.

COMPUTER APPRECIATION

 Nomed

INDEX TO ADVERTISERS AUGUST

Appointments Vacant Advertisements appear on pages 109-119

ovembeas advertisement

 Hungary Mrs Edit, Biaisz, Hungexpo Adverising

 \qquad

Models XS-BP (25 watt) and CS-BP (17 watt) have moulded-on safety plugs, 'unbreakable' handles and detachable hooks-cum-finger-protectors.
Long life iron and nickel plated bits, easily interchanged, slide on or off stainless steel shafts which enclose the heating elements for maximum efficiency of heat transfer. Both models available for $240 \mathrm{v}, 115 \mathrm{v}, 24 \mathrm{v}$ or 12 volt. R.S.P. $£ 5.30$ plus V.A.T.

ANTEX LIMITED, Mayflower House, Plymouth, Devon PL1 1BR. Telephone: (0752) 667377. (

AP DIP JUMPERS LOWEST PRICE IN THE UK. NEW AP LOW-PROFILE "D" SUB MINIATURE JUMPERS ALL RS232 COMPUTER LINK UP PROBLEMS SOLVED FREE TC16 WITH EVERY SUPERSTRIP SOLD

PART NO	CONTACTS	LENGTH INCHES	DESCRIPTION	PRICE
924 229-18	25	18	25 PIN MALE SINGLE END 18' LONG	5.97
924 222-18	25	18	25 PIN FEMALE SINGLE END 18'' LONG	6.04
924 269-36	25	36	25 PIN MALE TO MALE DOUBLE END $36{ }^{\prime \prime}$	11.73
924 299-36	25	36	25 PIN MALE TO 24 PIN DIP 36"	8.35
924 339-36	25	36	25 PIN MALE TO 26 PIN SOCKET 36'	10.50
924 262-36	25	36	25 PIN FEMALE TO FEMALE DOUBLE END 36'	11.50
924 292-36	25	36	25 PIN FEMALE TO 24 PIN DIP 36'	8.75
924 332-36	25	36	25 PIN FEMALE TO 26 PIN SOCKET	8.75
924 382-36	25	36	25 PIN FEMALE TO 25 MALE 36"	11.50

ALSO WITH 9, 15, 37 CONTACTS ANY STYLE HUGE DISCOUNTS FOR QUANTITY
AP sub-miniature " D " jumpers have the lowest front to back profile in the world and come to you fully assembled, tested and ready to use. They are directly replaceable with existing " D " connections.

DIP-DIP-DIP-DIP-DIP JUMPERS AP DIP JUMPERS ARE THE LOWEST PRICE IN THE UK

EX-STOCK DELIVERY
5 STANDARD LENGTHS
6, 12, 18, 24, 36"
WITH 14, $16,24,40$ CONTACTS

- FULLY ASSEMBLED AND TESTED
INTEGRAL MOULDED ON
STRAIN RELIEF
SINE BY LINE PROBEABILITY

SINGLE-ENDED

CONTACTS	$24^{\prime \prime}$
14	$£ 1.67$
16	$£ 1.89$
24	$£ 2.74$
40	$£ 4.38$

DOUBLE-ENDED all prices 1-9 off. Huge discounts for quantity

$6^{\prime \prime}$
$£ 2.11$
$£ 2.33$
$£ 3.45$

$12^{\prime \prime}$	$18^{\prime \prime}$	$24^{\prime \prime}$	$36^{\prime \prime}$
$\mathbf{£ 2 . 2 1}$	$£ 2.31$	$£ 2.43$	$\mathbf{£ 2 . 6 3}$
$£ 2.45$	$£ 2.58$	$£ 2.66$	$£ 2.97$
$£ 3.62$	$£ 3.78$	$£ 3.94$	$£ 4.30$
$\mathbf{£ 5 . 6 1}$	$£ 5.91$	$£ 6.22$	$£ 6.81$

We can supply DIP, SOCKET, PCB, CARD-EDGE RS232, assemblies made-up, tested, ready for use, cheaper than you can buy the parts, ask for quote.

TEST-CLIP TEST-CLIP

Clip an AP TEST-CLIP over an IC and you immediately bring up all the leads from the crowded board into an easy working level.
22 NEW AP TEST-CLIPS TO PICK FROM
examples: TC 14923695 £2.76 TC $16 \quad 923700 \quad £ 2.91$ TC $24 \quad 923714 \quad \mathbf{£ 8 . 5 0}$ TC $40 \quad 923722 \quad £ 12.88$

ADVENTURES ON THE IC'S A SPECIAL £6 OFF OFFER

EBBO'DISCRETE
EBBO DISCRETE
STARTER PACK
Normal Price
$\mathbf{f 6 . 6 7}$.

SUPERSTRIP SS2 THE BIGGEST SELLING BREADBOARD IN THE WORLD

When you buy a SUPERSTRIP BREADBOARD you buy a breadboard to last you for ever, we give you a LIFETIME guarantee. SUPERSTRIP is the most used breadboard by hobbyists, professionals and educationalists because it gives you more for your money . . . With 840 contact points SUPERSTRIP accepts all DIP's and discrete components and with eight bus bars of 25 contact points each SUPERSTRIP will take up to nine 14-pin. DIP's at any one time. You should only buy a breadboard once so buy the biggest seller with a lifetime guarantee. SUPERSTRIP SS2 923252 PRICE INCL VAT $\mathbf{£ 9 . 7 8}$

All prices shown are recommended retail incl. VAT
In difficulty send direct, plus 50p P \& P.
Send S.A.E. for a free copy of colour catalogues detailing our complete range.
AP PRODUCTS, POBOX 19, SAFFRON WALDEN, ESSEX, (0799) 22036

[^0]: ## ars as in it put ed ed ly so so ld on as ld ht on It be at at

[^1]: fig. 5. Knowing the step response of a network the response to a

